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Abstract

This paper1is the report of an experiment. Every year all the
companies under the supervision of the Swiss Federal Office for Private
Insurance (FOPI) deliver the sensitivities of their portfolios to a set
of predefined risk factors. Out of these sensitivities it is possible to
compute the risk measures for market risk and the resulting capital
requirement. Using a linear approximation, these measures can be
computed analytically. Given these sensitivities, it is also possible to
include the convexity effect using a Monte Carlo simulation.

The results show that the SST Standard Model is unsuitable for
all the Life companies since it substantially underestimates risk.

1 Introduction

All the companies under the supervision of the Swiss Federal Office
for Private Insurance (FOPI) which participate in the SST Field Test
deliver the sensitivities of their portfolios to a set of predefined risk
factors. Using these sensitivities it is possible to compute analytically
the risk measures (Value at Risk and Conditional Value at Risk) for
market risk. This is done automatically by the SST Standard Tem-
plate, a Microsoft Excel file elaborated by FOPI to be filled out by
each insurance company (available at: www.bpv.admin.ch).

The SST Standard Model assumes a Gaussian variance-covariance
portfolio structure with linear approximation (described in the next
section). This simplification is useful if you need a closed form solution

1This paper expresses the personal views and opinions of the authors. Please note
that the Office the authors work for neither advocate nor endorse the use of the valuation
techniques presented here for any purpose (including reporting and risk management).
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for V aR and CV aR but leads to a loss of information about the con-
vexity effect. This effect can be more or less pronounced. In order to
include the convexity effect we have to drop the linearity assumption.
In this case, the risk measures cannot be expressed analytically and
other methodologies have to be explored. We investigate two of these
methodologies: the Monte Carlo simulation and the Cornish-Fisher
approximation.

We proceed as follows. Section 2 shows how to formally obtain
the SST Standard Model for market risk. Section 3 shows how to
include the convexity effect (an additional assumption is required).
Two subsections introduce to the basic ideas about the Monte Carlo
method (3.1) and the Cornish-Fisher approximation (3.2). A note on
how to obtain numerically the second order Taylor expansion is in the
Section 4. The numerical results and comparison between the different
lines of business are exposed in Section 5.

We would like to stress the fact that options and guarantees em-
bedded in Life insurance contracts are not considered in this analysis
because they are not part of the SST for the Field Test 2006.

The results show that for Property and Casualty (P&C) and Health
companies there is no advantage in adding the convexity effect to the
linear approximation. For all the Life companies the SST Standard
Model is unsuitable because it substantially underestimates market
risk.

2 The SST Standard Model for Mar-

ket Risk

In this section we show how to formalize the SST Standard ModelṪhe
experienced reader will recognize the SST Standard Model as a special
case of the RiskMetricsTM model. Here we follow the notations of the
RiskMetricsTM Technical Document [3]. More details about the SST
implementation are available in [4].

Let (Ω,A, P) be a probability space, F a filtration on Ω. W = {Wt}
denotes a Wiener process on F . Every economic risk factor is modeled
trough its level value Pt. For Pt we assume the dynamics:

dPt = µPtdt + σPtdWt (1)

Thus the log-returns rt,T = log (PT /Pt) . can be expressed as:

rt,T = (µ − 1

2
σ2)(T − t) + σ

√
T − t · ǫ, (2)
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where ǫ ∼ N (0, 1). Suppose we have n risk factors and that µ = 1
2σ2

so that the previous equation becomes:

r
(i)
t,T = σi

√
T − t · ǫ(i) with ǫ(i) ∼ N (0, 1) (3)

for i = 1, . . . , n. Thus r
(i)
t,T ∼ N (0, σi

√
T − t). The SST assumes

T − t = 1 year, so that we can neglect the time index and write:

r(i) ∼ N (0, σi),

Assuming that the risk factors are not independent, we can denote
the correlations as

ρij := corr(ǫi, ǫj) (4)

and with
Σij = cov(r(i), r(j)) = σiσjρij .

Thus r = [r(1), . . . , r(n)] is a multivariate normal random variable with
expected value 0 and covariance matrix Σ = [Σij]:

r ∼ Nn(0,Σ) (5)

Let us denote by V the value of our portfolio. The portfolio value
is a function of the risk factors P: V (P). The change in the portfolio
value ∆V (P) with respect to changes in each of the risk factors ∆P
is given by:

∆V (P) := V (P + ∆P) − V (P). (6)

We can write the first order Taylor approximation as:

V (P + ∆P) ∼= V (P) +

n
∑

i=1

∂V

∂P (i)
· ∆P (i) (7)

The delta-equivalents of the portfolio to the risk factors are defined as

δi := ∂V/∂P (i) · P (i). (8)

The partial derivatives are the sensitivities of the portfolio with re-
spect to the risk factors. Sensitivities can be computed via sensitivity
analysis, see Section 4. The change in portfolio value can be expressed
as:

∆V (P) ∼=
n

∑

i=1

∂V

∂P (i)
· P (i) · ∆P (i)

P (i)
=

n
∑

i=1

δir
(i) = δ′r (9)

where r(i) = ∆P (i)/P (i). Since the Equation 5 states that the change
in risk factors is a multivariate normal Nn(0,Σ), then the change in
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the portfolio value is normally distributed with expected value 0 and
variance δ′Σδ:

∆V (P) ∼ N (0,
√

(δ′Σδ)) (10)

Remark. For the SST the portfolio value is given by the Risk
Bearing Capital (RBC). The RBC is defined as the market value of
assets minus the best estimate of liabilities (see [1], Art. 47).

Two risk measures are usually defined on the change in portfolio
value ∆V :

Value at Risk (VaR) The Value at Risk of ∆V at confidence level
α is defined as the solution of the following equation:

P[∆V ≤ V aRα(∆V )] = α (11)

Conditional VaR (CV aR) The CV aR of ∆V at level α is defined
as

CV aRα(∆V ) = E[∆V |∆V < V aRα(∆V )] (12)

Remark. For the SST the level α = 1% and the CV aR as risk
measure are chosen by the Supervisory Authority (FOPI)(see [1], Art.
41).

3 Beyond the linear approximation

Let us go beyond the first order approximation2. In this case the
change in the portfolio value ∆V can be expressed as:

∆V (P) ∼=

=

n
∑

k=1

Pk
∂V

∂Pk
· ∆Pk

Pk
+

1

2

n
∑

i=1

n
∑

j=1

PiPj
∂2V

∂Pi∂Pj
· ∆Pi

Pi

∆Pj

Pj

=

n
∑

k=1

Pk
∂V

∂Pk
rk +

1

2

n
∑

i=1

n
∑

j=1

PiPj
∂2V

∂Pi∂Pj
rirj

(13)

where rk = ∆Pk

Pk
, δk = Pk

∂V
∂Pk

, γij = PiPj
∂2V

∂Pi∂Pj
and n is the number

of risk factors. Thus we have:

∆V (P) ∼=

=

n
∑

k=1

δkrk +
1

2

n
∑

i=1

n
∑

j=1

γijrirj

= δ′r +
1

2
r′Γr

(14)

2For similar introductions see: [2], [6] and [7].
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In this framework, the triplet (δ,Γ,Σ) is called the portfolio structure.
We refer once again the reader to Section 4 for the computation of the
partial derivatives.

We have the following theorem3:

Theorem 3.1. Let us assume the hypothesis of Sections 2 and 4.
Given the portfolio structure (δ,Γ,Σ) such that

∆V = δ′r +
1

2
r′Γr (15)

the first two moments of ∆V are given by:

E(∆V ) =
1

2
tr[ΓΣ]

var(∆V ) = δ′Σδ +
1

2
tr[ΓΣ]

(16)

Let X be the ‘normalized’ ∆V :

X :=
∆V − E(∆V )
√

(var(∆V ))
(17)

The moments for i > 2 are:

E[X3] =
1
23!δ′Σ[ΓΣ]δ + 1

22!tr([ΓΣ]3)

var(∆V )3/2

E[X4] =
1
24!δ′Σ[ΓΣ]2δ + 1

23!tr([ΓΣ]4)

var(∆V )2

(18)

or, in general,

E[Xi] =
1
2 i!δ′Σ[ΓΣ]i−2δ + 1

2(i − 1)!tr([ΓΣ]i)

var(∆V )i/2
(19)

This theorem allows us to apply the Cornish-Fischer approxima-
tion exposed in the Section 3.2.

3.1 Delta-Gamma Monte Carlo

According to our assumptions, the n economic risk factors are not
independent. The Equation 5 states that the dependency structure is
(fully) described by the correlation matrix Σ.

We can then define the Cholesky decomposition of a positive defi-
nite matrix Σ as the triangular matrix C that verifies the equation:

C ′C = Σ. (20)

3See [6] and [7]
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Let r
I

be a multivariate Gaussian Nn(0, I). Then the random
vector r := r

I

′C has variance covariance matrix Σ. The proof is
straightforward.

Once computed C, it is then possible to:

1. generate n independent normally distributed random samples:
r̂

I

2. multiply r̂
I

′C = r̂.

The vector r̂ is called a scenario. Once r̂ has been generated,
it is possible to apply the portfolio structure (δ,Γ,Σ) to compute
the change in portfolio value ∆V (̂r) corresponding to the scenario r̂.
Repeat the simulation m times to obtain an empirical distribution of
the change in portfolio value ∆V .

The risk measures, V aRα and CV aRα at a given confidence level
α can be computed from the order statistics of the losses Lk:

L1 ≤ L2 ≤ . . . Lk ≤ . . . (21)

From these statistics we can just extract the first α samples. For
m simulations we have to select the first m · α order statistics. The
maximum of these values is the quantile at α, i.e. the VaRα, and the
average is the CV aRα.

3.2 The Cornish-Fisher Approximation

Theorem 3.1 in the Section 3 shows how to compute the first four
moments of the change in portfolio value ∆V , here denoted as:

µ1 = E(∆V ) µ2 = σ2 = var(∆V ) (22)

µ3 =
E(∆V − µ1)

3

σ3
µ4 =

E(∆V − µ1)
4

σ4
(23)

Let zα be the α-quantile of the standard Gaussian distribution and
denote with ρ3 and ρ4 the standardized moments of ∆V :

ρ3 =
µ3√
µ2

3 and ρ4 =
µ4

µ2
2

− 3. (24)

The Cornish-Fisher approximation of the α−quantile of ∆V is given
by:

q̃α(∆V ) ∼= z̃α · µ2 + µ1 (25)

where

z̃α
∼= zα +

1

6
(z2

α − 1)ρ3 +
1

24
(z3

α − 3zα)ρ4 −
1

36
(2z3

α − 5zα)ρ2
3 (26)
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Thus, the quantiles of ∆V can be estimated directly, without an ex-
plicit approximation of the entire distribution. Hence we have an
estimation for the VaRα for every confidence level α. The relationship
between V aR and CV aR is given4 by:

CV aRα = − 1

α

∫ 1

α
V aRzdz. (27)

Solving the integral numerically, we have a Cornish-Fisher estimation
of the CV aR :

CV aRα
∼= 1

n

n−1
∑

i=0

q̃α−i(∆V ). (28)

The Cornish-Fisher approximation is known to be not very precise,
especially in the tail of the distribution. However it is a good way
to ‘backtest’ the results of the Monte Carlo simulation. The CV aR
computed by the Monte Carlo simulation and the Cornish-Fischer
approximation can be different.

4 Sensitivity analysis

First and second derivatives can be computed using the change in
portfolio value with respect to changes in the risk factors. The quan-
tities reported to FOPI are the change in portfolio value for a change
in one risk factor:

up V (P (i) + ∆P (i)) − V (P (i))

and down V (P (i) − ∆P (i)) − V (P (i)).

For the first derivatives we have:

∂V

∂Pi

∼= [V (P (i) + ∆P (i)) − V (P (i))] − [V (P (i) − ∆P (i)) − V (P (i))]

2∆P (i)

(29)
The second derivatives are approximated by:

∂2V

∂P 2
i

∼= [V (P (i) + ∆P (i)) − V (P (i))] + [V (P (i) − ∆P (i)) − V (P (i))]

∆P (i) · ∆P (i)

(30)
Notice that the Equation 30 gives only the second derivatives with
respect to the same variable, i.e., only the diagonal of the matrix Γ.

4See [5].
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Proof. For the proof consider a differentiable function f of n variables
x, y, z, ...:

f(x, y, z, ...). (31)

Without loss of generality we report the proof referring to the first
variable only. The first order Taylor approximation is:

f(x + h, y, z, ...) ∼= f(x, y, z, ...) +
∂f

∂x
· h

f(x − h, y, z, ...) ∼= f(x, y, z, ...) − ∂f

∂x
· h

(32)

The difference of these two equations:

f(x + h, y, z, ...) − f(x − h, y, z, ...) ∼= 2
∂f

∂x
· h (33)

Thus we have:

∂f

∂x
∼= f(x + h, y, z, ...) − f(x − h, y, z, ...)

2 · h

=

[

f(x + h, y, z, ...) − f(x, y, z, ...)
]

−
[

f(x − h, y, z, ...) − f(x, y, z, ...)
]

2 · h
(34)

which is the Equation 29. The second order Taylor approximation is:

f(x + h, y, z, ...) ∼= f(x, y, z, ...) +
∂f

∂x
· h +

1

2

∂2f

∂x2
· h2

f(x − h, y, z, ...) ∼= f(x, y, z, ...) − ∂f

∂x
· h +

1

2

∂2f

∂x2
· h2

(35)

where obviously ∂f
∂x = ∂f

∂x(x, y, z, ...) and ∂2f
∂x2 = ∂2f

∂x2 (x, y, z, ...). The
sum of these two equations is:

f(x + h, y, z, ...) + f(x − h, y, z, ...) ∼= 2f(x, y, z, ...) +
∂2f

∂x2
· h2 (36)

Thus we have:

∂2f

∂x2
(x, y, z, ...) ∼= f(x + h, y, z, ...) − f(x − h, y, z, ...) − 2f(x, y, z, ...)

h2

=

[

f(x + h, y, z, ...) − f(x)
]

+
[

f(x − h, y, z, ...) − f(x)
]

h2

(37)

which is the Equation 30.
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Remark. The sensitivities delivered for the SST do not allow us
to compute the cross derivatives

∂2f

∂x∂y
(38)

because we would need the joint changes in portfolio value with respect
to a change in two risk factors at the same time:

f(x + h, y + k, . . . ) − f(x, y, . . . ). (39)

Obviously the company can compute these quantities simply re-eva-
luating the portfolio.

Since these data are not available we need the following assump-
tion.

Assumption 4.1 (Diagonal Gamma). We assume that the matrix
Gamma is a diagonal matrix:

Γ :=



















γ11 0 . . . . . . 0

0
. . .

...
... γii

...
...

. . . 0
0 . . . . . . 0 γnn



















A comment is in order here. The ‘Diagonal Gamma’ Assumption 4.1 is
verified for bonds where the cross derivatives are null for two different
spot risk-free rates:

∂2f

∂x∂y
= 0 for x 6= y.

The same is for true shares, usually modeled linearly. The second
partial derivatives are not null when the portfolio contains financial
derivatives:

∂2f

∂x∂y
6= 0 for x 6= y

The second partial derivatives are again not null in case of investment
in other currencies because of the multiplication with exchange rates.
Some information is lost with this additional assumption.

5 Numerical results

The Monte Carlo simulation has been realized generating 50000 sce-
narios. The companies considered partecipated in the SST Field Test
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2006. They are summarized in the Table 1. The companies for which
the sensitivities to the predefined FOPI’s risk factors are not available
areexcluded. Usually these companies have full internal models.

Health P&C Life Total
Number Of Companies F.T.‘06 13 19 15 47
Excluded 1 5 3 9
Number Of Companies Considered 12 14 12 38

Table 1: Companies considered for the numerical analysis. The first line is
the number of companies taking part to the Field Test 2006.

The output of the Monte Carlo simulation can be represented as
in the Figure 1. In order to keep the complete confidentiality of the
data, the x axis reports only the value in 0. The distribution in light
color is the Gaussian approximation. As expected, it is symmetric and
centered in zero. The Delta-Gamma approximation is in dark color.
The non-zero mean is clearly visible. The bottom-left frame shows a
particular of the tails.
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Figure 1: Output of a Monte Carlo simulation for a randomly chosen P&C
company

As expected, the Delta-Gamma approach produces more skewed
(see Figure 1) and heavy tailed distributions (see Figure 2) for the
∆V . By the point of view of risk (and capital requirement) the left
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Figure 2: Output of a Monte Carlo simulation for a randomly chosen Life
company

tail is the interesting one. In the Figure 3 you can see the tail of four
randomly chosen Life companies compared to P&C/Health companies.
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Figure 3: Left tail of the change in portfolio value for four randomly chosen
Life Companies (first line) and P&C/Health Companies (second line).

The convexity captured by the Delta-Gamma approach can pro-
duce a substantial change in kurtosis. That agrees with the Equation
18. However this effect is higher for Life companies than for the others
lines of business.

In order to confirm that, we plot the difference between the CV aR
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in the Gaussian case (Delta approach) and the Delta-Gamma approach
in the Figure 4. The CV aR from the Gaussian approximation (Monte
Carlo with the Delta approximation only) is the light bar. The dark bar
is the Delta-Gamma approximation via the Cornish-Fisher estimation
as in the Section 3.2. We apply the Formula 28 with n = 100. The
dark dot is the ‘true’ value obtained with the Delta-Gamma Monte
Carlo simulation.

The market risk is slightly overestimated (by the point of view of
Delta-Gamma) for Health and P&C companies. For Life portfolio the
CV aR is underestimated from 0 to more than 40 percent.
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Figure 4: Comparison of the CV aR1% for the Gaussian and the Delta-
Gamma approach. The light line is the Gaussian CV aR normalized to one.
The dark line is the approximation of the CV aR1% using the Formula 27. The
bullet is the Delta-Gamma approximation with the Monte Carlo simulation.

The results show that the SST Standard Model is unsuitable for all
considered Life companies since it substantially underestimates risk.
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6 Conclusions and further research

This paper can be summarized as follows. The SST Standard Model
assumes a (δ,Σ) portfolio structure. A model is robust when a small
change in the assumptions does not produce big changes in the results.

So we modify the portfolio structure from (δ,Σ) to (δ,Γ,Σ). The
results is that the model is usually not robust for Life portfolios.

As a consequence, the linear approximation in a variance-covariance
approach is strongly discouraged for such portfolios. The change in
portfolio value ∆V is not Gaussian but heavy tailed.

Much more sophisticated methods have to be introduced to capture
such a tail behavior. We discourage the use of fast approximations,
like the Cornish-Fisher method, even if they are widely used by banks.
The reason is that they refer to totally different kinds of portfolios,
time horizons and levels of confidence. We suggest to rely on Monte
Carlo simulations.

A last warning. The methodology used for this analysis refers
mainly to standard portfolios. That is, portfolios with standard Life
contracts. When options are embedded in Life insurance contracts,
other precautions have to be taken.
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