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This document provides background on the StandRe model. It is provided for illustration purposes only 
and does not constitute an official StandRe document. The document may potentially be updated at any 
time. 
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 1 Model structure 

1.1 Output granularity 

The output of the StandRe components IE1 and IE2 in the default case is one frequency-severity model 
for the total info event loss with distributions that are fitted to a number of scenarios. Main reasons for this 
approach are: 

(1) Simplicity: The model is more trackable and its calibration less demanding. Only one frequency-
severity model needs to be calibrated, and no dependencies between sub-models need to be 
considered. Per risk or per contract event conditions of outward retro do not need to be imple-
mented in an IT application and only need to be considered in the calculations of the scenarios.  

(2) Dependencies: Dependencies between segments are implicitly captured through the scenario 
severities and do not need to be modeled through dependency assumptions/copulas. Reliance is 
made on extreme value theory (Generalized Pareto fitting) to account for combinations of seg-
ment losses not observed in the individual scenarios; 

(3) Extrapolation/fitting: The credibility of the frequency-severity model is considered to be higher if 
one model is fitted to total event losses from all scenarios instead of several frequency-severity 
models fitted to segment event losses. 

Depending on the form of the outward retrocession, this approach needs to be adjusted for IE1 by using 
several IE1 model segments. However, the IE1 model for several IE1 model segments is still ultimately 
calibrated on the level of the sum of the severities over the IE1 model segments to the IE1 scenarios by 
comparing the two exceedance frequency curves. 
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 2 Attritional events 

2.1 Correlation matrices 

The correlation matrices between LOBs for AER and AEP are different and are derived, respectively, 
from the SST non-life standard model by mapping the StandRe LOBs to the LOBs of the non-life standard 
model (see below). This ensures some consistency. The basic rationale for the correlation numbers is as 
follows: 

• There is a base correlation of 0.15 present in any case as a lower bound; 

• If two LOBs have a significant common risk driver, the correlation increases to 0.25; 

• If they have two significant common risk drivers, the correlation is 0.5. 

It is useful to consider that there are differences in causes of dependencies between AER and AEP:  

• For AEP, correlations mainly arise from the exposure to common “external events”, e.g. damage 
events. 

• For AER, correlations are additionally more strongly driven by “company-internal events”, specifi-
cally the best estimate reserving process.  

In particular, correlations within AER may be present even when there is no reason to assume a correla-
tion coming from “external events". 

The distinction between AER and AEP correlations is reflected in the correlation matrix between regions 
(and between the types of business Prop and NonProp): 

• For AEP, the correlations are assumed to be relatively small as the defined regions are quite 
large and thus assumed to be little affected by common “external events”.  

• For AER, on the other hand, “internal events” are more relevant. Thus, correlations are required 
not to be below the floor of 0.15.  

The AER correlations between regions other than “not regional” are set to 0.5, as for example claims in-
flation might be geographically linked, e.g. through repair costs, e.g. linked to commodity prices. Note that 
the strength of this link likely depends on the LOB, with e.g. a stronger link for Marine or Aviation, even 
when these are not assigned to “not regional”. 

For “not regional” contracts, the correlations to other regions are larger than they would be for contracts 
assigned to some region, as “external events” affect a “not regional” contract always in a region. 

The selection of the correlations between Prop and NonProp is a compromise between the correlation 
between Prop and Non-Prop for the same LOB and region, where the realistic correlation may be lower 
than the selection, and for different LOBs and regions, where it may be higher than the selection. 
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 The following mapping from SST non-life standard model LOBs to StandRe LOBs is used to set the Stan-
dRe correlations based on the non-life standard model. The correlations from the non-life standard model 
selected for StandRe are the largest correlations of corresponding non-life LOBs.  

Non-life LOB StandRE LOB 

Motor Liability (MFH)  Motor 

Motor Hull (MFK) 
 

Property (Sach)  Property 

ES-Pool 
 

General Liability (Haft)  General liability  

Accident mandatory (UVG)  Accident and health 

UVG Renten 
 

Accident optional (U.o.UVG)  

Workers Compensation (KolK)   

Individual Health (EinK) 
 

Transport (Trans)  Marine, aviation and other transport (MAT) 

Aviation (Luft) 
 

Credit & Surety (F&K)  Financial losses  

Legal (Rechts) Other Non-life  

Other (Andere)  
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 3 Individual events 

3.1 Classification of info events/non-experience scenarios 

The following criteria, which are subsequently explained by examples, can be used for a classification of 
info events. This can in particular be useful for understanding the range of the aspects of the risk profile to 
be covered by non-experience scenarios and specifically also own scenarios. The classification criteria 
are: 

(A) Damaged insured risks (e.g. physical objects, persons, financial loss) and the degree to which 
they are localized (e.g. geographically) 

(B) Affected LOBs and potentially regions (e.g. standard or specialty LOBs) 

(C) Affected (number of) insurers and subset of the given reinsurer’s cedants (e.g. one, few, many; 
e.g. 10 insurers are affected, of which 3 are cedants of the given reinsurer) 

(D) Information that becomes known in the current year about claims caused by the info event. This 
is expressed by the “phases of insured claims”: claim that has (been) “caused”, “occurred”, “real-
ized”, “reported”, “settled”, and claim that is “expected” to manifest. 

(E) Type of "impact" of the info event. This follows from (D). (E.g. known new claims, expected new 
claims, changes in known or expected claims severities) 

(F) Contracts affected, specifically affected underwriting/accident years (current accident year, prior 
accident years). This follows from (D) and the coverage conditions on the inward reinsurance 
contracts (e.g. claims made, losses occurring). 

(G) Difference between ultimate and one-year risk (linked to (D), no difference if the information in 
the current year includes the ultimate loss) 

(H) Contract events that correspond to the info event 

(I) Severity of loss to affected programs relative to maximum possible loss for the program. 

Example 1: typical damage event 

As an example, a typical “damage event”, which is a sudden catastrophic occurrence such as an explo-
sion of a large industrial facility, can lead to 

• (A) few large insured risks significantly damaged (e.g. building) and potentially many damaged 
insured risks (e.g. people injured or dead), both considerably geographically localized, which 

• (B) typically affect a few LOBs, where  

• (C) there might be several insurers affected by LOB due to coinsurance on large industrial risks.  
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 • (D) known information in the current year typically includes “caused”, “occurred”, “realized”, “re-
ported”, and maybe even “settled”, so that  

• (E) the event results in known new claims on  

• (F) the current underwriting year given the coverage conditions (e.g. losses occurring), and  

• (G) there is possibly some difference between ultimate and one-year risk, but maybe not too 
much.  

• For (H), the event is likely a contract event, so that  

• (I) the severity is a fraction of the maximum possible contract event loss, maybe 100% at least for 
the few large insured risks.  

As a result, in terms of the inward reinsurance portfolio of the reinsurer, the event corresponds to several, 
but not many large new claims losses to reinsurer on current year business, from not many programs for 
not many LOBs, with little difference between ultimate and one-year risk (because of a short duration be-
tween the phase “caused” and the phase “settled”). The event may correspond to one contract event for 
each of the involved LOBs. 

An alternative damage event scenario of a “giant hail storm” has many similar characteristics, but with 
likely many more insured risks only partially damaged and geographically strictly localized but over a 
wider area. Due to the per event cover, this can lead to similar losses to reinsurer, with potentially more 
programs affected.  

The two examples in particular correspond to a distinction that can be made for damage events between 
e.g.  

• damage events that lead to large losses because a lower number of high value objects are heav-
ily damaged (e.g. explosion of industrial facility), and 

• “frequency events”, in which a large number of not particularly high value objects are somewhat 
damaged or many new claims arise, so that the large event loss is the result of accumulation 
(e.g. hail storm, legal change).  

An argument can be made that “frequency events” can be more problematic as they can be more difficult 
to control. 

Example 2: emerging liability mass tort 

As a different example, consider an emerging liability mass tort event (something like Asbestos). For such 
an info event,  

• (A) very many insured risks can incur damages (e.g. people injured), likely only weakly localized, 
which are  
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 • (B) typically covered in terms of LOBs by e.g. Product Liability (quite strongly localized) and 
through a spill over to Commercial Liability and Workers Compensation/Employers Liability 
(weakly localized), where  

• (C) for Product Liability several and for Commercial Liability and Workers Compensation/Employ-
ers Liability very many insurers may be affected.  

• (D) known information in the current year likely mainly contains “expected” and maybe some “re-
ported” 

• Leading for Commercial Liability and Workers Compensation/Employers Liability to 

o (E) many expected and maybe some reported new claims for  

o (F) typically the current but also potentially many prior years, especially when the cover is 
“losses occurring” or “action committed”, and  

o (G) with considerable difference between the one-year and the ultimate risk due to the 
large number of only “expected” new claims.  

• For Product Liability, there may be  

o (E) several but not many “expected” or “reported” new claims potentially  

o (F) only for the current year if the corresponding cover is claims made, with some differ-
ence between ultimate and one-year risk.  
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 3.2 Frequency calculation for experience scenarios incl. uncertainty 

Input data 

The starting point is a collection of historical large info event losses 𝑥𝑥𝑗𝑗
𝑘𝑘 with occurrence year 𝑘𝑘 = 1, … , 𝑛𝑛 in 

the observation period of 𝑛𝑛 years, where 𝑗𝑗 = 1, … , 𝑚𝑚𝑘𝑘 and 𝑘𝑘 = 𝑛𝑛 is the year prior to the current year 𝐶𝐶𝐶𝐶 =
𝑛𝑛 + 1. The purpose of the following is to estimate from the historical large info event losses 𝑥𝑥𝑗𝑗

𝑘𝑘: 

• the expected number of losses for the current year 

• the estimation uncertainty of this estimate 

In StandRe, the above quantities are estimated for experience scenarios, which are a subset of the histor-
ical large info event losses defined in terms of their as-if adjusted severity. For simplicity, we treat scenar-
ios and historical large info event losses as synonymous in this section. 

Each loss 𝑥𝑥𝑗𝑗
𝑘𝑘 has an assigned reporting lag 𝑙𝑙𝑙𝑙𝑙𝑙𝑗𝑗

𝑘𝑘 corresponding to the number of years between occur-
rence and reporting year (the reporting year is the year in which the loss is reported to the reinsurer), 
where 𝑙𝑙𝑙𝑙𝑙𝑙𝑗𝑗

𝑘𝑘 = 0 means that the two years coincide. Because the losses are known at the start of the cur-
rent year, we must have 𝑙𝑙𝑙𝑙𝑙𝑙𝑗𝑗

𝑘𝑘 ≤ 𝑛𝑛 − 1 (no loss with a larger reporting lag occurring in the observation pe-
riod 𝑘𝑘 = 1, … , 𝑛𝑛  would be known) and for each 𝑘𝑘 = 1, … , 𝑛𝑛, 

𝑘𝑘 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑗𝑗
𝑘𝑘 ≤ 𝑛𝑛 

Each loss is assigned to a frequency as-if adjustment segment, where for every segment an exposure 
𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 is given for each year 𝑘𝑘 in the observation period and 𝑒𝑒𝐶𝐶𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠 for the exposure for the current year. The 

choice of the as-if adjustment segments and the exposure measures is related to the assumed underlying 
stochastic model explained in the following. 

Underlying stochastic model 

We distinguish occurred losses from reported losses: 

• Numbers of occurred losses are denoted by 𝑁𝑁…
… 

• Numbers of reported/known losses are denoted by 𝑁𝑁�…
… 

We assume 

• The loss occurrences for each segment 𝑠𝑠𝑒𝑒𝑙𝑙 follow an inhomogeneous (or nonhomogeneous) 
Poisson process on the real line with a time-dependent intensity function 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) > 0.  

More specifically, we consider successive years ]𝑘𝑘, 𝑘𝑘 + 1] for 𝑘𝑘 = 1, … , 𝑛𝑛 and 𝑘𝑘 = 𝐶𝐶𝐶𝐶 and assume that the 
number 𝑁𝑁𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 of losses/points in each year is Poisson distributed, independent between different years 𝑘𝑘, 
with mean given by (where the first equality holds generally for inhomogeneous Poisson processes and 
the second is specific): 
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 𝐸𝐸�𝑁𝑁𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠� = � 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)𝑑𝑑𝑡𝑡

]𝑘𝑘,𝑘𝑘+1]

= 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 

where 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 is the exposure for the segment 𝐼𝐼𝑘𝑘, and 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 > 0 is the annual frequency by unit of exposure 

for the segment. In particular, for the current year,  

𝐸𝐸�𝑁𝑁𝐶𝐶𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠� = 𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 

Frequency as-if adjustment segments and factors 

The above underlying stochastic model is linked to frequency as-if adjustment segments and factors. As 
an illustration, if 𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 > 0, we get for example 

𝐸𝐸�𝑁𝑁𝐶𝐶𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠� =

𝑒𝑒𝐶𝐶𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠

𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝐸𝐸�𝑁𝑁𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠� 

i.e. for the frequency as-if adjustment segment 𝑠𝑠𝑒𝑒𝑙𝑙, the frequency 𝐸𝐸�𝑁𝑁𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠� for occurrence year 𝑘𝑘 is trans-

formed to the frequency for the current year by multiplication with the frequency as-if adjustment factor 
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠

𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠� . If 𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 = 0, we assume that a priori 𝑁𝑁𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 = 0, i.e. there can be no losses if there is no (histori-

cal) exposure. 

Reporting lags and known losses 

Because of the reporting lags, the available observations 𝑥𝑥𝑗𝑗
𝑘𝑘 from the observation period do not corre-

spond to all losses 𝑁𝑁𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠, but only to the losses 𝑁𝑁�𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 known at time 𝑡𝑡 = 0 (start of the current year). Analo-
gously, we define the number 𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠 of known losses in the entire observation period to the segment 𝑠𝑠𝑒𝑒𝑙𝑙 
with reporting lag 𝑙𝑙𝑙𝑙𝑙𝑙. A historical loss 𝑥𝑥𝑗𝑗

𝑘𝑘 with reporting lag 𝑙𝑙𝑙𝑙𝑙𝑙 is known if and only if 

𝑘𝑘 + 𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑛𝑛   

In particular, in any case, 𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑛𝑛 − 1. 

We make the assumption: 

• Assumption: There is no loss with 𝑙𝑙𝑙𝑙𝑙𝑙 ≥ 𝑛𝑛.1 

To express the link between known losses and reporting lags, we need to introduce the quantity 𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠  of 

all occurred losses to the segment 𝑠𝑠𝑒𝑒𝑙𝑙 in the occurrence year 𝑘𝑘 with reporting lag 𝑙𝑙𝑙𝑙𝑙𝑙 and can then ex-
press the number 𝑁𝑁�𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 of known losses with occurrence year 𝑘𝑘 and segment 𝑠𝑠𝑒𝑒𝑙𝑙 by 

𝑁𝑁�𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 = � 𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛−𝑘𝑘

𝑙𝑙𝑙𝑙𝑠𝑠=0

 

 
1 This is akin to a "tail factor =1" assumption in a development triangle setting. 
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 and the number 𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 of known losses with reporting lag 𝑙𝑙𝑙𝑙𝑙𝑙 and segment 𝑠𝑠𝑒𝑒𝑙𝑙 by 

𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 = � 𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

 

For 𝑘𝑘 = 1 … 𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙, the number 𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠  of occurred losses is known, i.e. 𝑁𝑁�𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 . 

Extension of underlying stochastic model to reporting lags 

To be able to work with reporting lags, it is desirable to extend the underlying stochastic model to 𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 , 

i.e. to assume that 

𝐸𝐸�𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 � = 𝑒𝑒𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 

with 

� 𝑒𝑒𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛−1

𝑙𝑙𝑙𝑙𝑠𝑠=0

= 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 

This is based on the  

• Assumption: the same frequency rate 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 applies to losses assigned to the same (frequency as-
if adjustment) segment 𝑠𝑠𝑒𝑒𝑙𝑙 with different reporting lags.  

This can be justified through the definition of the segments: if there would be a difference between differ-
ent reporting lags, the segments would have to be defined more granular to reflect this difference. 

The problem with the above extension is that the exposure 𝑒𝑒𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠  per reporting lag is likely not available 

(and likely not reasonably definable). Given this, we make the  

• Assumption: the ratio 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 between a given reporting lag exposure 𝑒𝑒𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠  and the total exposure 
𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 is the same for each year 𝑘𝑘 = 1, … , 𝑛𝑛 and 𝑘𝑘 = 𝐶𝐶𝐶𝐶. I.e. there are numbers 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 0 so that 

𝑒𝑒𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 

It follows that for 𝑘𝑘 = 1, … , 𝑛𝑛 and 𝑘𝑘 = 𝐶𝐶𝐶𝐶, 

𝐸𝐸�𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 � = 𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 

with 

� 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 = 1

𝑛𝑛−1

𝑙𝑙𝑙𝑙𝑠𝑠=0
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 By summing over all years 𝑘𝑘 = 1, … , 𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙, 

𝐸𝐸�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠� = � � 𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

� ∙ 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 

Estimate of the frequency for the current year 

The objective is to find an estimate for the expected frequency for the current year 

𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶] = � 𝐸𝐸�𝑁𝑁𝐶𝐶𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠�

𝑠𝑠𝑠𝑠𝑠𝑠

= � � 𝐸𝐸�𝑁𝑁𝐶𝐶𝐶𝐶,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑛𝑛−1

𝑙𝑙𝑙𝑙𝑠𝑠=0𝑠𝑠𝑠𝑠𝑠𝑠

 

Using the expression above for 𝐸𝐸�𝑁𝑁𝐶𝐶𝐶𝐶,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 �, this can be written 

𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶] = � � 𝑒𝑒𝐶𝐶𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛−1

𝑙𝑙𝑙𝑙𝑠𝑠=0𝑠𝑠𝑠𝑠𝑠𝑠

 

Candidates for estimators 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠

�  in this expression are, using the formulas for 𝐸𝐸�𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 � and 𝐸𝐸�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠� 
from above, for each of the years 𝑘𝑘 = 1, … , 𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙 with positive exposure (𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 > 0), replacing 𝐸𝐸�𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 � 

with 𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 , 

𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠

𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠  

and for the sum over all years 𝑘𝑘 = 1, … , 𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙 (with positive exposure), provided ∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1 ≠ 0, 

𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠

� =
𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

 

Note that, if ∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1 = 0, then also 𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 = 0, as there can be no losses if there is no exposure. The 

above estimator corresponds to the weighted mean of the estimators from the individual years 𝑘𝑘 using the 
weights 

𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠

∑ 𝑒𝑒𝑙𝑙
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑙𝑙=1

 

A justification for the selection of the weights is that the experience from years with higher exposure is 
considered to be more credible. One can also show that the above estimator is the maximum likelihood 
estimator (additionally assuming that 𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠  are Poisson distributed). 

We then get the estimate 𝑍𝑍 of 𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶] as 
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 𝑍𝑍 = � �
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

∙ 𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛−1

𝑙𝑙𝑙𝑙𝑠𝑠=0
∑ 𝑠𝑠𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠
𝑘𝑘=1 ≠0

𝑠𝑠𝑠𝑠𝑠𝑠

 

It is straightforward to verify that this estimator is unbiased, i.e. 𝐸𝐸[𝑍𝑍] = 𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶]. It can be written in terms of 
the experience scenarios 𝑠𝑠 and their assigned segments 𝑠𝑠𝑒𝑒𝑙𝑙(𝑠𝑠) and reporting lags 𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠) as 

𝑍𝑍 = �
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠(𝑠𝑠)

𝑘𝑘=1𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑛𝑛𝑒𝑒𝑠𝑠 
𝑠𝑠𝑒𝑒𝑠𝑠𝑛𝑛𝑙𝑙𝑒𝑒𝑒𝑒𝑠𝑠 𝑠𝑠

 

Justification for the frequency estimate 

If ∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1 ≠ 0, the estimator 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠

�  is unbiased, as  

𝐸𝐸 �𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠

� � =
𝐸𝐸�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠�

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

= 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 

For its variance we get, using that 𝑉𝑉𝑙𝑙𝑟𝑟�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠� = 𝐸𝐸�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠� because of the Poisson assumption, and using 
the expression for 𝐸𝐸�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠� from above, 

𝑉𝑉𝑙𝑙𝑟𝑟 �𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠

� � =
𝐸𝐸�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠�

�∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1 �
2 =

𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

 

As further justification for the estimator, we show that the estimator 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠

�  is the minimum variance 
estimator (among unbiased estimators) in that its variance attains the Cramer-Rao lower bound. For unbi-
ased estimators 𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠� of  

𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠: = 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 

the Cramer-Rao lower bound is 

𝑉𝑉𝑙𝑙𝑟𝑟 �𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠�� ≥

1

𝐼𝐼 �𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠��

 

where 

𝐼𝐼 �𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠�� = 𝐸𝐸 �−

𝜕𝜕2

𝜕𝜕𝜃𝜃2 �𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓�𝑋𝑋, 𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠���� 

where the expectation is taken over the observations 𝑋𝑋 = �𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑘𝑘 = 1, … , 𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙�, and 𝑓𝑓�𝑋𝑋, 𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠� is the 
likelihood of the observations 𝑋𝑋 given the parameter 𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠. For 𝑓𝑓�𝑋𝑋, 𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠�, given that 𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠  are independ-
ent Poisson random variables with mean 𝐸𝐸�𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠 � = 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠, we get 
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𝑓𝑓�𝑋𝑋, 𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠� = � 𝑒𝑒−𝑠𝑠𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠∙𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠
∙

�𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠�𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠

�𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 � !

𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

 

It follows that  

−
𝜕𝜕2

𝜕𝜕𝜃𝜃2 �𝑙𝑙𝑙𝑙𝑙𝑙 �𝑓𝑓�𝑋𝑋, 𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠��� = −

𝜕𝜕2

𝜕𝜕𝜃𝜃2 � � −𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ �𝑙𝑙𝑙𝑙𝑙𝑙�𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠� + 𝑙𝑙𝑙𝑙𝑙𝑙�𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠�� − 𝑙𝑙𝑙𝑙𝑙𝑙 ��𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠 �!�
𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

�

= �
𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠

�𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠�

2

𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

 

and thus, using 𝐸𝐸�𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 � = 𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠, 

𝐼𝐼 �𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠�� = 𝐸𝐸 � �

𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠

�𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠�

2

𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

� =
∑ 𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠
𝑘𝑘=1

𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠  

Consequently, 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠

�  is indeed the minimal variance estimator, as we get with the Cramer-Rao lower 
bound: 

𝑉𝑉𝑙𝑙𝑟𝑟 �𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠�� ≥

𝜃𝜃𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

= 𝑉𝑉𝑙𝑙𝑟𝑟 �𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠

� � 

Uncertainty of the frequency estimate 

For the estimation uncertainty of the frequency estimator 𝑍𝑍, we estimate its variance. Due to independ-
ence of the random variables 𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠 and because 𝑉𝑉𝑙𝑙𝑟𝑟�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠� = 𝐸𝐸�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠� because of the Poisson assump-
tion, and using the expression for 𝐸𝐸�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠� from above, we get 

𝑉𝑉𝑙𝑙𝑟𝑟(𝑍𝑍) = � � �
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

�
2

∙ � � 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

� ∙ 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛−1

𝑙𝑙𝑙𝑙𝑠𝑠=0
∑ 𝑠𝑠𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠
𝑘𝑘=1 ≠0

𝑠𝑠𝑠𝑠𝑠𝑠

 

Replacing 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 by its estimator 𝑟𝑟𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠
�  from above, we get an estimator 𝑉𝑉𝑙𝑙𝑟𝑟(𝑍𝑍) for the variance 

𝑉𝑉𝑙𝑙𝑟𝑟(𝑍𝑍)� = � � �
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

�
2

∙ 𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛−1

𝑙𝑙𝑙𝑙𝑠𝑠=0
∑ 𝑠𝑠𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠
𝑘𝑘=1 ≠0

𝑠𝑠𝑠𝑠𝑠𝑠

 

= � �
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠(𝑠𝑠)

𝑘𝑘=1

�
2

𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑛𝑛𝑒𝑒𝑠𝑠 
𝑠𝑠𝑒𝑒𝑠𝑠𝑛𝑛𝑙𝑙𝑒𝑒𝑒𝑒𝑠𝑠 𝑠𝑠
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 Estimated frequency including estimation uncertainty uplift for the current year 

We can set the estimated frequency 𝜆𝜆𝐼𝐼𝐼𝐼1 including the estimation uncertainty uplift for the current year to 
the sum of the frequency estimate and the standard deviation estimate derived from the variance esti-
mate: 

𝜆𝜆𝐼𝐼𝐼𝐼1 = �
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠(𝑠𝑠)

𝑘𝑘=1𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑛𝑛𝑒𝑒𝑠𝑠 
𝑠𝑠𝑒𝑒𝑠𝑠𝑛𝑛𝑙𝑙𝑒𝑒𝑒𝑒𝑠𝑠 𝑠𝑠

+ � � �
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠(𝑠𝑠)

𝑘𝑘=1

�
2

𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑛𝑛𝑒𝑒𝑠𝑠 
𝑠𝑠𝑒𝑒𝑠𝑠𝑛𝑛𝑙𝑙𝑒𝑒𝑒𝑒𝑠𝑠 𝑠𝑠

 

The objective is: 

• 𝜆𝜆𝐼𝐼𝐼𝐼1 should be at least as large as the true frequency (from the inhomogeneous Poisson pro-
cess) in sufficiently many cases. 

An alternative approach, in which the estimated frequency does not include the estimation uncertainty 
uplift, but this is considered in the volatility, is presented in Section 3.3. 

Simulation case study 

For the benchmark model, we assume that the underlying stochastic model is known and calculate the 
true frequency 𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶] analytically.  

The estimated frequency 𝜆𝜆𝐼𝐼𝐼𝐼1 (incl. uplift) is then calculated independently 1'000 times by drawing one 
realization from every Poisson random variable 𝑁𝑁𝑘𝑘,𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠  and using the above formulas.  

The percentage of draws for which the estimated frequency 𝜆𝜆𝐼𝐼𝐼𝐼1 exceeds the true frequency 𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶] is re-
ported in the table below for different values of the overall historical exposure ∑ 𝑒𝑒𝑘𝑘

5
𝑘𝑘=1  for an observation 

period of five years (all other parameters remaining fixed). 

 
𝒆𝒆𝑪𝑪𝑪𝑪 

 
47 

 
47 

 
47 

 
47 

� 𝒆𝒆𝒌𝒌

𝟓𝟓

𝒌𝒌=𝟏𝟏

 
 

2.55 
 

25.5 
 

255.5 
 

2555 

#{𝝀𝝀𝑰𝑰𝑰𝑰𝟏𝟏
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 > 𝑰𝑰[𝑵𝑵𝑪𝑪𝑪𝑪], 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝟏𝟏, … , 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏} 

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
 43.5% 73.5% 80.1% 82.5% 

The percentages shown above are the probabilities that 

𝑍𝑍 + �𝑉𝑉𝑙𝑙𝑟𝑟(𝑍𝑍)� ≥ 𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶] 
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 where 𝑍𝑍 is the estimator of 𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶] and 𝑉𝑉𝑙𝑙𝑟𝑟(𝑍𝑍)�  is the estimator of the variance of 𝑍𝑍. Denoting by Φ the cu-
mulative distribution function of the standard normal distribution, and assuming that Z is normal distrib-
uted, the probability that 

𝑍𝑍 + �𝑉𝑉𝑙𝑙𝑟𝑟(𝑍𝑍) ≥ 𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶] 

is close to and larger than 84%, because Φ−1(0.84) is less than but close to 1 and 

𝑃𝑃 �𝑍𝑍 + �𝑉𝑉𝑙𝑙𝑟𝑟(𝑍𝑍)Φ−1(0.84) ≥ 𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶]� = 𝑃𝑃 �𝑍𝑍 ≥ 𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶] − �𝑉𝑉𝑙𝑙𝑟𝑟(𝑍𝑍)Φ−1(0.84)�

= 𝑃𝑃 �𝑍𝑍 ≥ 𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶] + �𝑉𝑉𝑙𝑙𝑟𝑟(𝑍𝑍)Φ−1(0.16)� = 1 − 𝑃𝑃 �
𝑍𝑍 - 𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶]

�𝑉𝑉𝑙𝑙𝑟𝑟(𝑍𝑍) )
≤Φ−1(0.16)� = 0.84 

The numbers in the table above deviate from 84% because Z is only approximately normal distributed 
and because 𝑉𝑉𝑙𝑙𝑟𝑟(𝑍𝑍)�  is only approximately equal to 𝑉𝑉𝑙𝑙𝑟𝑟(𝑍𝑍). If the realizations 𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠 are smaller than their 
means 𝐸𝐸�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠�, then both the estimator of 𝐸𝐸[𝑁𝑁𝐶𝐶𝐶𝐶] and the variance are underestimated. In addition, there 
may be an estimation error from the limited number of 1'000 trials. 

We can see that the deviations between 84% and the simulated numbers from the table reduce as the 
historical exposure increases, i.e. as "more historical experience" is available, corresponding to higher 
values of 𝐸𝐸�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠�. The explanation for this is as follows. If the means 𝐸𝐸�𝑁𝑁�𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠� are close to zero, the prob-

ability to underestimate the "true" expected frequency can be quite high, as 𝑃𝑃�𝑁𝑁𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 = 0, ∀ 𝑠𝑠𝑒𝑒𝑙𝑙, ∀𝑙𝑙𝑙𝑙𝑙𝑙� =

exp(−∑𝐸𝐸�𝑁𝑁𝑙𝑙𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠�) can get close to 1 for small 𝐸𝐸�𝑁𝑁𝑙𝑙𝑙𝑙𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠�. This leads with high probability to an estimator of 
zero (even with the uplift), because most realizations will be zero. However, in reality, this would translate 
to a situation in which there are almost no historical large event losses, which would have to be amelio-
rated by lower IE1 modelling thresholds.  

As-if adjusted frequencies incl. IBNyR of experience scenarios 

We would like to assign to each experience scenario 𝑠𝑠 a frequency 𝑓𝑓𝑠𝑠 so that the sum over all experience 
scenarios of this frequency is equal to the total estimated frequency 𝜆𝜆𝐼𝐼𝐼𝐼1 including estimation uncertainty 
uplift from above. We do this by first determining a frequency 𝑓𝑓𝑠𝑠

′ that does not consider the uplift and then 
scaling up proportionally, i.e.  

𝑓𝑓𝑠𝑠 = 𝑓𝑓𝑠𝑠
′ ∙

𝜆𝜆𝐼𝐼𝐼𝐼1

∑ �
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠(𝑠𝑠)

𝑘𝑘=1

�𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑛𝑛𝑒𝑒𝑠𝑠 
𝑠𝑠𝑒𝑒𝑠𝑠𝑛𝑛𝑙𝑙𝑒𝑒𝑒𝑒𝑠𝑠 𝑠𝑠

 

The estimated frequency 𝑓𝑓𝑠𝑠
′ is intended to be as-if adjusted to the current year and including considera-

tion of IBNyR. The natural selection in view of the estimator 𝑍𝑍 is 

𝑓𝑓𝑠𝑠
′ =

𝑒𝑒𝐶𝐶𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠(𝑠𝑠)

𝑘𝑘=1

 

With this selection, the sum over all experience scenarios of 𝑓𝑓𝑠𝑠
′ is equal to 𝑍𝑍, and the frequency is as-if 

adjusted to the current year and considers IBNyR in the following sense: assume that we would disregard 
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 IBNyR, i.e. disregard the fact that losses may have occurred but not yet be known because of the report-
ing lag. In this case, we would consider the whole exposure of the observation period 𝑘𝑘 = 1, … , 𝑛𝑛 for the 
as-if adjustment, so the frequency estimate 𝑓𝑓�̅�𝑠

′ disregarding IBNyR would be  

𝑓𝑓�̅�𝑠
′ =

𝑒𝑒𝐶𝐶𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)𝑛𝑛

𝑘𝑘=1

 

For ∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 > 0𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1 , we can interpret the difference 𝑓𝑓𝑠𝑠
′ − 𝑓𝑓�̅�𝑠

′ given by 

𝑓𝑓𝐼𝐼𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼(𝑠𝑠𝑒𝑒𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙) =
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1

−
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛

𝑘𝑘=1
 

as IBNyR that could be used to produce "artificial losses" for each of the years 𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙 + 1, … , 𝑛𝑛 for which 
information on occurred losses may be lacking due to IBNyR. Artificial losses can be assigned only to 
those years 𝑘𝑘 = 𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙 + 1, … , 𝑛𝑛 for which the corresponding exposure 𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 is positive (because in years 
with no exposure there can be no losses). We denote the number of such years by: 

𝑏𝑏(𝑠𝑠𝑒𝑒𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙) = #�𝑘𝑘 = 𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙 + 1, … , 𝑛𝑛�𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 > 0� ≤ 𝑙𝑙𝑙𝑙𝑙𝑙 

The IBNyR frequency 𝑓𝑓𝐼𝐼𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼(𝑠𝑠𝑒𝑒𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙) can be allocated to each such year 𝑘𝑘 = 𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙 + 1, … , 𝑛𝑛 with posi-
tive exposure 𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 in equal portions, producing for each such year an artificial loss with frequency (if 
𝑏𝑏(𝑠𝑠𝑒𝑒𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙) ≠ 0) 

𝑓𝑓𝐼𝐼𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼(𝑠𝑠𝑒𝑒𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)
 𝑏𝑏(𝑠𝑠𝑒𝑒𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)  

Note that whenever there is IBNyR, i.e. 𝑓𝑓𝑗𝑗
𝑘𝑘,𝐼𝐼𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼 is positive, there is a year 𝑘𝑘 = 𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙 + 1, … , 𝑛𝑛 to which 

the IBNyR can be allocated as its exposure is positive (otherwise we would have ∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠

𝑘𝑘=1 = ∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛

𝑘𝑘=1 , 
i.e. 𝑓𝑓𝑗𝑗

𝑘𝑘,𝐼𝐼𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼 = 0). Hence, whenever the above denominator is zero, the numerator is also zero. This pro-
cedure leads to additional "artificial" experience scenarios, but the problem is what severity to assign to 
these scenarios. We make the simplifying assumption: 

• The severity of the additional "artificial" experience scenarios is the same as the (as-if adjusted) 
severity of the historical loss that has "produced" them.  

With this assumption, no new scenarios must be produced, as for any original experience scenario, the 
sum of the corresponding "frequency without IBNyR" and IBNyR frequency can be assigned as total fre-
quency to that experience scenario, ending up with the scenario frequency 𝑓𝑓𝑠𝑠

′ we have started with. 

As-if adjusted frequencies old vs new 

Disregarding IBNyR/the reporting lags and the frequency uplift for the moment, the as-if adjusted fre-
quency of an individual experience scenario we use is 

𝑓𝑓�̅�𝑠
′ =

𝑒𝑒𝐶𝐶𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)𝑛𝑛

𝑘𝑘=1
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 This differs from the formula provided in the "field test 2016"-version of the model description, where for 
scenario 𝑠𝑠 with occurrence year 𝑘𝑘, it would be 

𝑓𝑓�̅�𝑠
′ =

𝑒𝑒𝐶𝐶𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) ∙

1
𝑛𝑛

 

The two formulas coincide if the exposures 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) are the same for all years in the observation period.  

As an argument for the former over the latter formula, assume for the moment that there is only one loss 
𝑥𝑥1

𝑙𝑙  in the observation period, so that the corresponding 𝑓𝑓1
𝑙𝑙 is the estimated expected loss frequency for the 

current year. In the former as opposed to the latter formula, this estimate also depends on the exposures 
for the years 𝑘𝑘 ≠ 𝑙𝑙 in the observation period, and this is relevant for the estimation of the frequency, in this 
specific case because it contains the information that no loss has been observed in the years 𝑘𝑘 ≠ 𝑙𝑙.  

To see why it is relevant, consider more concretely two special cases, where for the first case we assume 
that 𝑒𝑒𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) = 0 for 𝑘𝑘 ≠ 𝑙𝑙 and for the second that 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) = 𝑒𝑒𝑙𝑙

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) for 𝑘𝑘 ≠ 𝑙𝑙. The frequency estimate from 
the latter formula does not distinguish between the two cases. But in the first case there could not be any 
losses for 𝑘𝑘 ≠ 𝑙𝑙, whereas the fact that there were none for 𝑘𝑘 ≠ 𝑙𝑙 in the second case is relevant and should 
decrease the frequency estimate. 

The frequency we actually use considers IBNyR by not summing up to year 𝑛𝑛, but only up to year 𝑛𝑛 −
𝑙𝑙𝑙𝑙𝑙𝑙: 

𝑓𝑓𝑠𝑠
′ =

𝑒𝑒𝐶𝐶𝐶𝐶
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠(𝑠𝑠)

𝑘𝑘=1

 

The reason for this is that a loss with a positive reporting lag 𝑙𝑙𝑙𝑙𝑙𝑙 > 0 that had occurred in any of the years 
𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑙𝑙 + 1, … , 𝑛𝑛 would not be known at the start of the current year. Hence, in our example above, the 
fact that no corresponding loss has been observed in these years is not relevant (as it could not have 
been observed), so the exposures of those years should not be considered in the as-if adjustment of the 
frequency.  

3.3 Frequency distribution if mean is random, e.g. Gamma 

Frequency distribution 

We consider a frequency random variable 𝑁𝑁 that depends on a random variable Λ corresponding to its 
mean, so that 

• 𝑁𝑁|(𝛬𝛬 = 𝜆𝜆) is Poisson distributed for any λ with mean 𝐸𝐸[𝑁𝑁|𝛬𝛬] = 𝛬𝛬. 

Then: 

𝐸𝐸[𝑁𝑁] = 𝐸𝐸[𝛬𝛬],    𝑉𝑉𝑙𝑙𝑟𝑟(𝑁𝑁) =  𝐸𝐸[𝛬𝛬] + 𝑉𝑉𝑙𝑙𝑟𝑟(𝛬𝛬) 

i.e. 
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𝑉𝑉𝑙𝑙𝑟𝑟(𝑁𝑁)

𝐸𝐸[𝑁𝑁] = 1 +
𝑉𝑉𝑙𝑙𝑟𝑟(𝛬𝛬)

𝐸𝐸[𝛬𝛬]  

This follows because, by assumption, 𝐸𝐸[𝑁𝑁|𝛬𝛬] = 𝛬𝛬, so 𝐸𝐸[𝑁𝑁] = 𝐸𝐸�𝐸𝐸[𝑁𝑁|𝛬𝛬]� = 𝐸𝐸[𝛬𝛬], and 𝑉𝑉𝑙𝑙𝑟𝑟(𝑁𝑁|𝛬𝛬) = 𝐸𝐸[𝑁𝑁|𝛬𝛬] 
because of the Poisson assumption, so 𝐸𝐸[𝑁𝑁2|𝛬𝛬] = 𝑉𝑉𝑙𝑙𝑟𝑟(𝑁𝑁|𝛬𝛬) + 𝐸𝐸[𝑁𝑁|𝛬𝛬]2 = 𝛬𝛬 + 𝛬𝛬2, so 

𝑉𝑉𝑙𝑙𝑟𝑟(𝑁𝑁) = 𝐸𝐸�𝐸𝐸[𝑁𝑁2|𝛬𝛬]� − 𝐸𝐸�𝐸𝐸[𝑁𝑁|𝛬𝛬]�2 = 𝐸𝐸[𝛬𝛬] + 𝐸𝐸[𝛬𝛬2] − 𝐸𝐸[𝛬𝛬]2 

If in addition: 

• 𝛬𝛬 is Gamma-distributed with 𝐸𝐸[𝛬𝛬] = 𝛼𝛼
𝛽𝛽
 and 𝑉𝑉𝑙𝑙𝑟𝑟(𝛬𝛬) = 𝛼𝛼

𝛽𝛽2 

then 𝑁𝑁 is negative Binomial distributed (well known) with  

𝑉𝑉𝑙𝑙𝑟𝑟(𝑁𝑁)
𝐸𝐸[𝑁𝑁] = 1 +

1
𝛽𝛽

 

Parametrization 

The above results can be combined with the results from Section 3.2 to derive an alternative parameteri-
zation of the frequency 𝑁𝑁: 

𝐸𝐸[𝑁𝑁] = �
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠(𝑠𝑠)

𝑘𝑘=1𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑛𝑛𝑒𝑒𝑠𝑠 
𝑠𝑠𝑒𝑒𝑠𝑠𝑛𝑛𝑙𝑙𝑒𝑒𝑒𝑒𝑠𝑠 𝑠𝑠

 

𝑉𝑉𝑙𝑙𝑟𝑟(𝑁𝑁) = �
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠(𝑠𝑠)

𝑘𝑘=1𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑛𝑛𝑒𝑒𝑠𝑠 
𝑠𝑠𝑒𝑒𝑠𝑠𝑛𝑛𝑙𝑙𝑒𝑒𝑒𝑒𝑠𝑠 𝑠𝑠

+ � �
𝑒𝑒𝐶𝐶𝐶𝐶

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)

∑ 𝑒𝑒𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)𝑛𝑛−𝑙𝑙𝑙𝑙𝑠𝑠(𝑠𝑠)

𝑘𝑘=1

�
2

𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑛𝑛𝑒𝑒𝑠𝑠 
𝑠𝑠𝑒𝑒𝑠𝑠𝑛𝑛𝑙𝑙𝑒𝑒𝑒𝑒𝑠𝑠 𝑠𝑠

 

This can for example be used for calibrating a negative binomial distribution. The interpretation is that we 
take as the mean frequency the mean without any adjustment for estimation uncertainty, and consider the 
estimation uncertainty in the variance of the frequency.  
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 3.4 As-if adjustments for experience scenarios 

Experience scenarios are derived by as-if adjusting historical event losses. In the default approach, as-if 
adjustments are applied to event losses to reinsurer assigned to different as-if segments. For every his-
torical event loss in a given segment,  

(1) the as-if adjustment for the severity consists in multiplying the event loss with a factor specific to 
the segment, and  

(2) for the frequency, multiplying the occurrence frequency by a factor specific to the segment.  

In particular, in the default approach, the as-if adjusted historical losses to reinsurer are not calculated by 
applying the applicable current inward reinsurance structure to the as-if adjusted losses before inward 
reinsurance.  

This is a disadvantage given the possible changes in inward reinsurance structures over time and be-
cause the impact of the current inward reinsurance structures is approximated by multiplicative as-if ad-
justment factors applied after application of the historical inward reinsurance structure. However, it is con-
sidered necessary for the default approach for the following reasons: 

(1) An as-if adjusted historical event loss in a segment is considered to be a representative for all 
possible event losses for the segment in the current year. A segment typically does not just con-
tain one inward reinsurance contract. 

(2) The application of the current inward reinsurance structure to losses before inward reinsurance 
can lead to an underestimation of the occurrence frequencies, as there can be losses that were 
not reported under the prior year inward reinsurance structure but that would be relevant under 
the current structure. 

(3) It cannot be ruled out that the inward reinsurance underwriting over time is impacted by the loss 
experience, which can introduce a bias. 

These points apply also more generally and imply that the as-if adjustments cannot be applied to a granu-
larity that is too fine, as this could lead to an underestimation of losses.  

However, under the conditions specified in Section 4.6 in the StandRe model description, it is possible to 
apply as-if adjustments to historical "losses to cedant" and then apply the current outward retrocession 
structure. Because there are only few inward reinsurance contracts, the effort for this approach is consid-
erably lower than for a large number of contracts.  

The alternative is possible because with respect to the above points: 

(1) An as-if adjusted historical event loss in an as-if adjustment segment can be considered as a rep-
resentative for all possible event losses in the current year from that segment, as the segments 
are quite large. 
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 (2) The event losses considered are all event losses to the cedant that exceeded a given reporting 
threshold. Therefore, the problem with the underestimation does not apply. 

(3) The issue with the potential bias from underwriting based on loss experience, e.g. inward reinsur-
ance contracts are not renewed when they have incurred large losses, may not be relevant as 
there are only few contracts.  

3.5 Adjusting the frequencies of experience scenarios for non-experience sce-
narios 

We explain the derivation of the formula for 𝑓𝑓𝑠𝑠
′ from Section 6.7.2 of model description v6.0: 

𝑓𝑓𝑠𝑠 = 𝑓𝑓𝑠𝑠
′ ∙

𝜆𝜆𝐼𝐼𝐼𝐼1 − 𝑓𝑓𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠𝑒𝑒𝑒𝑒

𝜆𝜆𝐼𝐼𝐼𝐼1
 

where 𝑓𝑓𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠𝑒𝑒𝑒𝑒 is the sum of the expected occurrence frequencies of the non-experience scenarios 

𝑓𝑓𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠𝑒𝑒𝑒𝑒 = � 𝑓𝑓𝑠𝑠
𝐼𝐼𝐼𝐼1 𝑛𝑛𝑠𝑠𝑛𝑛−𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑛𝑛𝑒𝑒𝑠𝑠 𝑠𝑠𝑒𝑒𝑠𝑠𝑛𝑛𝑙𝑙𝑒𝑒𝑒𝑒𝑠𝑠 𝑠𝑠

 

To this end, recall that the sum of the expected occurrence frequencies 𝑓𝑓𝑠𝑠
′ of the experience scenarios is 

equal to 𝜆𝜆𝐼𝐼𝐼𝐼1. To remove overlaps with the non-experience scenarios, this sum should be reduced to 𝜆𝜆𝐼𝐼𝐼𝐼1 
minus the sum 𝑓𝑓𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠𝑒𝑒𝑒𝑒 of the expected occurrence frequencies of the non-experience scenarios. To 
achieve this, all expected occurrence frequencies 𝑓𝑓𝑠𝑠 of the experience scenarios are scaled with the same 
factor. Hence the sum of the changed expected occurrence frequencies 𝑓𝑓𝑠𝑠 of the experience scenarios 
should be equal to 𝜆𝜆𝐼𝐼𝐼𝐼1 − 𝑓𝑓𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠𝑒𝑒𝑒𝑒. The corresponding sum over the 𝑓𝑓𝑠𝑠

′ instead of 𝑓𝑓𝑠𝑠 is equal to 𝜆𝜆𝐼𝐼𝐼𝐼1. From 
this, the above formula for 𝑓𝑓𝑠𝑠 follows. 

The approach is thus based on the following assumptions: 

(1) In the default case, it is assumed that the non-experience scenarios do not increase the expected 
excess frequency 𝜆𝜆𝐼𝐼𝐼𝐼1 estimated from the experience scenarios. 

(2) The frequency selection is applied proportionally to all experience-scenarios. 

The default assumption behind (1) is that the experience scenarios “cover” the expected excess fre-
quency at the modeling threshold, so “adding” a non-experience scenario does not change (increase) the 
expected excess frequency at the modeling threshold. This implies that the expected occurrence frequen-
cies of the experience scenarios need to be reduced. (2) corresponds to the assumption that there is no 
sub-set of experience scenarios which corresponds to the non-experience scenarios.
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4 Charts – Overview of StandRe items 
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