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Abstract

In this article we want to motivate and analyse a wide family of reserving models,

called linear stochastic reserving methods (LSRMs). The main idea behind them is

the assumption that the (conditionally) expected changes of claim properties during

a development period are proportional to exposures which depend linearly on the

past. This means the discussion about the choice of reserving methods can be

based on heuristic reasons about exposures driving the claims development, which

in our opinion is much better than a pure philosophic approach. Moreover, the

assumptions of LSRMs do not include the independence of accident periods.

We will see that many common reserving methods, like the Chain-Ladder-Method,

the Bornhuetter-Ferguson-Method and the Complementary-Loss-Ratio-Method, can

be interpreted in this way. But using the LSRM framework you can do more. For

instance you can couple different triangles via exposures. This leads to reserving

methods which look at a whole bundle of triangles at once and use the information

of all triangles in order to estimate the future development of each of them.

We will present unbiased estimators for the expected ultimate and estimators for

the mean squared error of prediction, which may become an integral part of IFRS 4.

Moreover, we will look at the one period solvency reserving risk, which already is

an important part of Solvency II, and present a corresponding estimator.

Finally we will present two examples that illustrate some features of LSRMs.

Keywords: Stochastic Reserving, Mean Squared Error of Prediction,

Solvency Reserving Risk, Claims Development Result.
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1 Introduction

A main task of actuaries is to analyse random claim properties and project their

development. This often includes the combination of several sources of information,

but most of the standard reserving models cannot properly combine such informa-

tion. For instance, they only project payments or reported amounts separately,

but cannot combine both. In recent years several authors have studied models

that can be used in specific situations in order to analyse different claim proper-

ties simultaneously, see for instance Quarg-Mack [12], Halliwell [5], Dahms [3] and

Wüthrich-Merz [11].

In this paper we will introduce a wide class of stochastic reserving methods that can

deal with several claim properties simultaneously. The main idea behind them is

the assumption that the (conditionally) expected changes of claim properties during

a development period are proportional to exposures which depend linearly on the

past of claim properties. Therefore, we will call such methods linear stochastic

reserving methods or LSRMs. Another important property of LSRMs is that they

allow for various dependencies of accident periods. Many of the classical reserving

methods, like the Chain-Ladder-Method, the Complementary-Loss-Ratio-Method

and the Bornhuetter-Ferguson-Method, are LSRMs, see Sections 2.1-2.4.

We will derive estimators for the ultimate outcome of claim properties (Section 3),

analyse the overall uncertainty of these estimators (Section 4) and the one period

uncertainty of the claims development result (Section 5). The analysis of the overall

uncertainty may become an integral part of IFRS 4 and the analysis of the uncer-

tainty of the claims development result already is an important part of Solvency

II. Moreover, we will see that in the case of some classical reserving methods those

estimators are the same as introduced before by other authors, see for instance

Mack [6], Buchwalder et al. [2] and Dahms-Merz-Wüthrich [4].

In Section 6 we will present and discuss two examples of LSRMs based on real data.

We will not discus the question which method is the best for the projection of specific

data. Although this is a very important question it is too complex for this paper.

Moreover, we think that for the model selection non triangle based information is of

great importance, see the example of Section 6.1, and it is very difficult to include

such information into an analytic triangle based rating of methods.
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2 The model

Let Sm
i,k, 0 ≤ m ≤ M , 0 ≤ i ≤ I, 0 ≤ k ≤ J , denote the incremental value of the

m-th claim property of the i-th accident period during the k-th development period.

We assume that I ≥ J and that there is no development of any claim property after

development period J , which means we do not discuss any tail development. Such

claim properties may be the usual candidates like payments, reported amounts and

number of reported claims or even more special constructions like payments after

reopening.

Our model contains three natural time lines: accident periods or rows, development

periods or columns and business periods or lower-left to upper-right diagonals. We

will use the indices i and h for accident periods, j and k for development periods, l

and m for claim properties and n for business periods, see Figure 1.

By L
n and Lk we denote the linear spaces generated by all increments Sm

i,j up to

business period n and development period k, respectively. Moreover, by L
n
k we

denote the linear space generated by L
n and Lk , i.e.

L
n :=





M∑

m=0

I∑

i=0

(n−i)∧J∑

j=0

xmi,jS
m
i,j : xmi,j ∈ R



 ,

Lk :=





M∑

m=0

I∑

i=0

k∑

j=0

xmi,jS
m
i,j : xmi,j ∈ R



 ,

L
n
k :=





M∑

m=0

I∑

i=0

((n−i)∧J)∨k∑

j=0

xmi,jS
m
i,j : xmi,j ∈ R



 , (2.1)

where a∧b and a∨b denote the minimum and maximum of the real numbers a and b,

respectively. The σ-algebra of all information of accident period i up to development

period k is denoted by Bi,k. Moreover, we denote the σ-algebras generated by L
n,

Lk and L
n
k by Dn, Dk and Dn

k , respectively, i.e.

Bi,k := σ
(
Sm
i,j : 0 ≤ m ≤ M, 0 ≤ j ≤ k

)
, Dk := σ (Lk) = σ

(
I⋃

i=0

Bi,k

)
,

Dn := σ (Ln) = σ

(
I⋃

i=0

Bi,(n−i)∧J

)
, Dn

k := σ (Lnk) = σ

(
I⋃

i=0

Bi,((n−i)∧J)∨k

)
,

see Figure 1. We call the information Di+k
k the past of Sm

i,k+1, 0 ≤ m ≤ M .
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Figure 1: Claim property triangle

Assumption 2.1 We call the stochastic model of the increments Sm
i,k a linear

stochastic reserving method (LSRM) if there exist constants fm
k and σ

m1,m2

k such

that

i) for all i, m and k the expectation of the claim property Sm
i,k+1 under the con-

dition of all information of its past Di+k
k is proportional to an exposure Rm

i,k

contained in L
i+k ∩ Lk, i.e.

E
[
Sm
i,k+1

∣∣Di+k
k

]
= fm

k Rm
i,k ∈ L

i+k ∩ Lk. (2.2)

ii) for all i, m1, m2 and k the covariance of the claim properties Sm1
i,k+1 and Sm2

i,k+1

under the condition of all information of their past Di+k
k is proportional to an

exposure R
m1,m2

i,k contained in L
i+k ∩ Lk, i.e.

Cov
[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Di+k
k

]
= σ

m1,m2

k R
m1,m2

i,k ∈ L
i+k ∩ Lk. (2.3)

Remark 2.2

1. If accident periods are independent and if all exposures Rm
i,k and R

m1,m2

i,k are

Bi,k-measurable it is enough to assume

i)’ E
[
Sm
i,k+1

∣∣Bi,k

]
= fm

k Rm
i,k

ii)’ Cov
[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Bi,k

]
= σ

m1,m2

k R
m1,m2

i,k .

2. You can not take arbitrary values for σ
m1,m2

k and R
m1,m2

i,k . The choice has to

be consistent with the corresponding covariance properties, i.e. the matrices

(σm1,m2

k R
m1,m2

i,k )0≤m1,m2≤M
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have to be positive semidefinite almost surely for all i and all k.

3. For almost all results of this paper the assumption about the linearity of the

exposures R
m1,m2

i,k could be weakened to R
m1,m2

i,k is measurable with respect to

Di+k ∩Dk. The only exception is the derivation of an estimate for the process

variance of the ultimate uncertainty, see Sections 4.1.

4. To get well defined objects we have to distinguish between the model parame-

ters fm
k and σ

m1,m2

k and the method defining exposure parameters γ
m,l
i,k,h,j and

γ
m1,m2,l
i,k,h,j of

Rm
i,k =:

M∑

l=0

I∑

h=0

(i+k−h)∧k∑

j=0

γ
m,l
i,k,h,jS

l
h,j and R

m1,m2

i,k =:

M∑

l=0

I∑

h=0

(i+k−h)∧k∑

j=0

γ
m1,m2,l
i,k,h,j Sl

h,j,

(2.4)

respectively.

5. Often the choice of the exposures, i.e. of the parameters γm,l
i,k,h,j and γ

m1,m2,l
i,k,h,j in

(2.4), is of great importance. Unfortunately, we neither can provide a statistical

nor a general heuristic concept for this choice. In some cases, see for instance

Example 6.1, there is portfolio based information that may help with the choice

of exposures. An other useful technique is backtesting that means to look for

exposures for which we see now that the corresponding projections would have

been reliable in the past. For instance, if we have been using the same LSRM

for several years and always got good results, there is no reason to change the

exposure.

6. If you are only interested in estimators for the expected ultimate outcome you

will not need assumption (2.3).

7. External given exposures may be included in a similar way as described for the

Complementary-Loss-Ratio-Method, see Section 2.2.

The following lemma contains some useful implications of Assumption 2.1.

Lemma 2.3 Assume Sm
i,k satisfy Assumption 2.1. Then

a) E
[
Sm
i,k+1

∣∣Di+k
]
= E

[
Sm
i,k+1

∣∣Dk

]
= fm

k Rm
i,k.

b) Cov
[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Di+k
]
= Cov

[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Dk

]
= σ

m1,m2

k R
m1,m2

i,k .

c) Cov
[
Sm1
n+1−j1,j1

, Sm2
n+1−j2,j2

∣∣∣Dn
]
= 0, for j1 6= j2.
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d) provided that all exposures Rm
i,k depend only on the i-th accident period, all

accident periods will be uncorrelated under the knowledge of some past, i.e.

for all σ-algebras Dn
k , all i1 6= i2 and arbitrary k1, k2, m1 and m2 we have

Cov
[
Sm1
i1,k1

, Sm2
i2,k2

∣∣∣Dn
k

]
= 0. (2.5)

Proof: Since Dn and Dk are subsets of Dn
k and Rm

i,k and R
m1,m2

i,k are Dn ∩ Dk-

measurable parts a) and b) are direct consequences of Assumption 2.1.

For part c) assume that j1 > j2. Then Sm1
n+1−j2,j2

is Dn
j1−1

-measurable and we get

Cov
[
Sm1
n+1−j1,j1

, Sm2
n+1−j2,j2

∣∣∣Dn
]
= Cov

[
E
[
Sm1
n+1−j1,j1

∣∣∣Dn
j1−1

]
, Sm2

n+1−j2,j2

∣∣∣Dn
]
= 0,

where we used that E
[
Sm1
n+1−j1,j1

∣∣∣Dn
j1−1

]
∈ Dn ∩ Dj1−1 ⊆ Dn ⊆ Dn

j1−1
.

In order to prove part d) take i1 6= i2 and arbitrary k, k1, k2, m1, m2 and n. If Sm1
i1,k1

or Sm2
i2,k2

is measurable with respect to Dn
k we are done. Otherwise, Dn

k is a subset

of Di1+k1−1
k1−1

and Di2+k2−1
k2−1

and Sm1
i1,k1

is measurable with respect to the past of Sm2
i2,k2

or vice versa. Without loss of generality assume that Sm1
i1,k1

is Di2+k2−1
k2−1

-measurable.

Then we get

Cov
[
Sm1
i1,k1

, Sm2
i2,k2

∣∣∣Dn
k

]
= E

[
Cov

[
Sm1
i1,k1

, Sm2
i2,k2

∣∣∣Di2+k2−1
k2−1

]∣∣∣Dn
k

]

+Cov
[
E
[
Sm1
i1,k1

∣∣∣Di2+k2−1
k2−1

]
,E
[
Sm2
i2,k2

∣∣∣Di2+k2−1
k2−1

]∣∣∣Dn
k

]

= 0 + Cov
[
Sm1
i1,k1

, fm2
k2−1

Rm2
i2,k2−1

∣∣∣Dn
k

]
.

Since Rm2
i2,k2−1

∈ Bi2,k2−1 it is enough to show that Sm1
i1,k1

and Sm2
i2,k2−1

are Dn
k -

conditional uncorrelated. Iterating this procedure we will finally reach a point

where Sm1
i1,k1−j

or Sm2
i2,k2−j

is Dn
k -measurable, which proves (2.5). ✷

Remark 2.4 Under the assumption that all exposures Rm
i,k and R

m1,m2

i,k are Bi,k-

measurable Lemma 2.3 implies that the correlation of different accident periods

is determined by their first development period, i.e. there exist linear mappings

Ci,k : R
M → R such that

Cov
[
(Sm

i1,k1
)0≤m≤M , (Sm

i2,k2
)0≤m≤M

]
= Cov

[
Ci1,k1(S

m
i1,0)

0≤m≤M , Ci2,k2(S
m
i2,0)

0≤m≤M
]

provided i1 6= i2.

In the following sections we will discus for some well known reserving models if and

how they fit into the framework of LSRMs.
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2.1 Chain-Ladder-Method

For the Chain-Ladder-Method as analysed in Mack [6] one looks at one cumulative

claim property

Ci,k :=
k∑

j=0

S0
i,j.

The assumptions for the Chain-Ladder-Method are

i)CL E[Ci,k+1|Bi,k]= gkCi,k.

ii)CL Var[Ci,k+1|Bi,k]= σ2
kCi,k.

iii)CL Accident periods are independent.

Since, Ci,k are elements of Li+k
k and since

E
[
S0
i,k+1

∣∣Bi,k

]
= (gk − 1)Ci,k and Var

[
S0
i,k+1

∣∣Bi,k

]
= σ2

kCi,k

we see that the Chain-Ladder-Method is a LSRM .

2.2 Complementary-Loss-Ratio-Method

For the Complementary-Loss-Ratio-Method one looks at a claim property S0
i,j and

an external given exposure Pi that does not develop over time. The assumptions

for this method are

i)LR E
[
S0
i,k+1

∣∣∣Bi,k

]
= gkPi.

ii)LR Var
[
S0
i,k+1

∣∣∣Bi,k

]
= σ2

kPi.

iii)LR Accident periods are independent.

If we take

S1
i,k :=





Pi, for k = 0,

0, otherwise,

we see that the Complementary-Loss-Ratio-Method is a LSRM .

Note, usually one assumes a bit less and takes unconditional expectations. The

main differences between taking conditional and unconditional expectations are:

• By taking the unconditional expectation you pretend to be only interested in

the overall expectation of the projected claim property, where the average is

taken over all triangles, although the projected claim property may depend
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on the already observed triangle. In other words, the method does not use all

available information and therefore may not be optimal.

• By taking conditional expectations you explicitly assume that the projected

claim property does not depend on the already observed triangle.

2.3 Bornhuetter-Ferguson-Method

Here we look at one claim property S0
i,k. Usually the Bornhuetter-Ferguson-Method

is written as
J∑

k=I+1−i

S0
i,k = qI+1−iU

pri
i , (2.6)

where U
pri
i is a priori known estimate of the ultimate outcome, which may be

motivated by pricing arguments or by external experts. Now we have to estimate

the loss ratios qk. Often the Chain-Ladder factors are used. But we can do better,

see Mack [8]. We will use this idea and rewrite (2.6) as follows

J∑

k=I+1−i

S0
i,k =

J∑

k=I+1−i

gk−1U
pri
i .

If we now look at the unknown factors gk column by column we get

S0
i,k+1 = gkU

pri
i .

Finally, taking conditional expectations and U
pri
i as external exposure we see that

the Bornhuetter-Ferguson-Method can be looked at as Complementary-Loss-Ratio-

Method and therefore as a LSRM .

2.4 Extended-Complementary-Loss-Ratio-Method

For this method we look at incremental payments S0
i,k and changes of the reported

amounts S1
i,k simultaneously. The coupling exposures are the case reserves

R0
i,k = R1

i,k = R
0,0
i,k = R

0,1
i,k = R

1,0
i,k = R

1,1
i,k :=

k∑

j=0

(S1
i,j − S0

i,j).

Using this we get the following LSRM

i)ELR E
[
Sm
i,k+1

∣∣∣Bi,k

]
= fm

k

∑k
j=0(S

1
i,j − S0

i,j) for m ∈ {0, 1}.

ii)ELR Cov
[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Bi,k

]
= σ

m1,m2

k

∑k
j=0(S

1
i,j − S0

i,j) for m1,m2 ∈ {0, 1}.
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iii)ELR Accident periods are independent.

Note, this method projects payments and reported amounts in a way that both

projections lead to the same ultimate. For details see Dahms [3].

2.5 Munich-Chain-Ladder-Method

This method, see Quarg-Mack [12], considers the Chain-Ladder-projections of cu-

mulative payments Ci,k :=
∑k

j=0 S
0
i,j and reported amounts Ii,k :=

∑k
j=0 S

1
i,j to-

gether in order to reduce the systematic gap between the stand alone Chain-Ladder-

projections, see Braun [1]. But the gap is not closed entirely.

As shown in Merz-Wüthrich [9] the Munich-Chain-Ladder-Method assumes

i)MCL E[Ci,k+1|Ck]= fkCi,k and E[Ii,k+1|Ik]= gkIi,k,

ii)MCL Accident periods are independent.

Here Ck and Ik contain all information of payments and reported amounts up to

development period k, respectively. Note, in i)MCL you cannot extend these sigma

algebras to Dk like we have done in Section 2.2. Moreover, instead of looking at

E[Ci,J |DI−i] and E[Ii,J |DI−i], which are the orthogonal projections of Ci,J and Ii,J ,

respectively, on the linear space of all DI−i-measurable, square-integrable random

variables, the Munich-Chain-Ladder-Method considers the orthogonal projections

on a much smaller affine subspace, for details see Merz-Wüthrich [9].

These are the main reasons why the Munich-Chain-Ladder-Method does not fit into

the framework of LSRMs.

3 Estimators for future development

In this section we want to present estimators for the future development of claim

properties, motivate them and prove some properties. In order to shorten notations

we define 0
0 := 0.

Estimator 3.1 (of the model parameter fm
k ) Let Sm

i,k satisfy Assumption 2.1.

Then for each set of Di+k ∩Dk-measurable weights wm
i,k ≥ 0 with

• Rm
i,k = 0 implies wm

i,k = 0 and

•
∑I−1−k

i=0 wm
i,k = 1 if at least one Rm

i,k 6= 0

9



we get that

f̂m
k :=

I−1−k∑

i=0

wm
i,k

Sm
i,k+1

Rm
i,k

(3.1)

is a Dk-conditionally unbiased estimator of the model parameter fm
k .

Moreover, for every tuple f̂m1
k1

, . . . , f̂mr

kr
with k1 < k2 < · · · < kr we get

E
[
f̂m1
k1

· · · f̂mr

kr

∣∣∣Dk1

]
= fm1

k1
· · · fmr

kr
= E

[
f̂m1
k1

∣∣∣Dk1

]
· · ·E

[
f̂mr

kr

∣∣∣Dkr

]
, (3.2)

which implies that the estimators are pairwise Dk1-conditionally uncorrelated.

Proof: Let us start with the derivation of (3.1):

E
[
f̂m
k

∣∣∣Dk

]
=

I−1−k∑

i=0

wm
i,k

E
[
E
[
Sm
i,k+1

∣∣∣Di+k
k

]∣∣∣Dk

]

Rm
i,k

=

I−1−k∑

i=0

wm
i,k

fm
k Rm

i,k

Rm
i,k

= fm
k .

Moreover, for every tuple f̂m1
k1

, . . . , f̂mr

kr
with k1 < k2 < · · · < kr we compute

E
[
f̂m1
k1

· · · f̂mr

kr

∣∣∣Dk1

]
= E

[
E
[
f̂m1
k1

· · · f̂mn

kr

∣∣∣Dkr

]∣∣∣Dk1

]

= E
[
f̂m1
k1

· · · f̂
mr−1

kr−1
E
[
f̂mr

kr

∣∣∣Dkr

]∣∣∣Dk1

]

= E
[
f̂m1
k1

· · · f̂
mr−1

kr−1

∣∣∣Dk1

]
fmr

kr

...

= fm1
k1

· · · fmr

kr
,

which proves (3.2). ✷

Remark 3.2 Assumption 2.1.ii) implies that the weights

wm
i,k :=

(
Rm

i,k

)2

R
m,m
i,k




I−1−k∑

h=0

(
Rm

h,k

)2

R
m,m
h,k




−1

, (3.3)

result in estimators f̂m
k with minimal (Dk-conditional) variance of all estimators of

the form (3.1). In other words the resulting estimators f̂m
k are (homogeneous) credi-

bility estimators. Moreover, in case of the Chain-Ladder-Method, the Complementary-

Loss-Ratio-Method and the Extended-Complementary-Loss-Ratio-Method those vari-

ance minimal estimators are the well known standard estimators, see for example

Mack [6] and [7] and Dahms [3].

In order to shorten notations for further calculations we will use the linear mappings

Γm
i,k : L

i+k
0 −→ R, Fm

i,k : L
i+k
0 −→ R and Fn : Ln0 −→ L

n+1
0
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defined by the exposure parameter γm,l
i,k,h,j, see (2.4),

Γm
i,kx :=

M∑

l=0

I∑

h=0

(i+k−h)∧k∑

j=0

γ
m,l
i,k,h,jx

l
h,j, (3.4)

Fm
i,kx := fm

k Γm
i,kx, (3.5)

(Fnx)mi,k :=





xmi,k, for i+ k ≤ n or k = 0,

Fm
i,k−1x, for i+ k = n+ 1.

(3.6)

Remark 3.3

• The mapping Fn fills the n+1-th diagonal of all claim property triangles based

on all diagonals up to the n-th business period.

• Even if the operators Fm
i,k, F

m
i,k and Fi+k depends only on coordinates within

L
i+k ∩ Lk we have to enlarge their domain to L

i+k
0 in order to be able to

concatenate the operators Fn.

• Fm
i,kx =

(
Fi+kx

)m
i,k+1

.

The concatenation of linear mappings Fn is denoted by

Fn2←n1 :=





Π
L
n2+1

0

, for n2 < n1,

Fn2Fn2−1 · · ·Fn1 , for n2 ≥ n1,

Fm,n
i,k x :=

(
Fi+k←nx

)m
i,k+1

, (3.7)

where Π
L
n

0
denotes the projection on the first n diagonals and the first column.

Moreover, we will use the symbol Sn for the vector

Sn :=
(
Sm
i,k

)0≤m≤M
i+k≤n or k=0

.

As a consequence we get

E
[
Sm
i,k+n+1

∣∣Di+k ∩ Dk

]
= E

[
Sm
i,k+n+1

∣∣Di+k
]

= Fm,i+k
i,k+n S

i+k, (3.8)

E
[
Sn1+n2+1

∣∣Dn1
]

= Fn1+n2←n1Sn1 ,

Rm
i,k = Γm

i,kS
i+k.

This together with Estimator 3.1 lead to estimators for the future development of

all claim properties.

11



Estimator 3.4 (of the future development) Let Sm
i,k satisfy Assumption 2.1.

Then

Ŝm
i,k+1 := F̂m,I

i,k SI , I − i ≤ k < J, (3.9)

are unbiased estimators of E
[
Sm
i,k+1

∣∣∣DI
]
, where F̂m,n

i,k is defined in the same way as

Fm,n
i,k , see (3.5) and (3.7), but with f̂m

k instead of fm
k .

Proof: Because of Remark 3.3 and since each mapping F̂m
i,k depends linearly on

f̂m
k , we can rewrite the estimators as follows

F̂m,I
i,k SI =

∑

0≤k1<···<kr≤k

f̂m1
k1

· · · · · f̂mr

kr
X

m1,...,mr

k1,...,kr
, (3.10)

where X
m1,...,mr

k1,...,kr
are elements of LI ∩ Lk1 and therefore measurable with respect to

DI ∩Dk1 . Now the stated unbiasedness follows from (3.8) and the properties of f̂m
k ,

stated in Estimator 3.1. ✷

Remark 3.5 If the development of claim properties does not depend on future ac-

cident periods, that means if all exposure parameters γ
m,l
i,k,h,j = 0, for h > i, the

summation in (3.10) starts at I− i, which means the stated estimators Ŝm
i,k are even

DI−i-conditionally unbiased estimators of E
[
Sm
i,k+1

∣∣∣DI
]
.

In the same way we get unbiased estimators R̂m
i,k and R̂

m1,m2

i,k of the exposures Rm
i,k

and R
m1,m2

i,k by

R̂m
i,k :=

M∑

l=0

I∑

h=0

(i+k−h)∧k∑

j=0

γ
m,l
i,k,h,jŜ

l
h,j and R̂

m1,m2

i,k :=
M∑

l=0

I∑

h=0

(i+k−h)∧k∑

j=0

γ
m1,m2,l
i,k,h,j Ŝl

h,j ,

(3.11)

respectively, with exposure parameters γm,l
i,k,h,j and γ

m1,m2,l
i,k,h,j , see (2.4).

Note, we only need estimates of the exposures R
m1,m2

i,k in order to derive the esti-

mates for the process variance of the ultimate uncertainty, see Section 4.1.

In order to shorten notations we will use the definitions

Ŝm
i,k := Sm

i,k, R̂m
i,k := Rm

i,k and R̂
m1,m2

i,k := R
m1,m2

i,k ,

for k ≤ I − i or k = 0.
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4 Mean squared error of prediction

In the previous section we presented estimators for the ultimate outcome of claim

properties. Now let us look at the (conditional) mean squared error of prediction

for the estimated future development. Often we are in a situation where we are

not only interested in a single claim property but in a linear combination of several

claim properties, see for instance the examples presented in Section 6. Therefore,

take DI-measurable weights αm
i , 0 ≤ i ≤ I and 0 ≤ m ≤ M .

We will start with a fixed accident period i > I − J . The corresponding mean

squared error of prediction is defined by

mse

[
M∑

m=0

J−1∑

k=I−i

αm
i Ŝm

i,k+1

]
:= E



(

M∑

m=0

J−1∑

k=I−i

αm
i

(
Sm
i,k+1 − Ŝm

i,k+1

))2
∣∣∣∣∣∣
DI


. (4.1)

A short calculation yields

mse

[
M∑

m=0

J−1∑

k=I−i

αm
i Ŝm

i,k+1

]

= Var

[
M∑

m=0

J−1∑

k=I−i

αm
i Sm

i,k+1

∣∣∣∣∣D
I

]

︸ ︷︷ ︸
process variance

+

(
M∑

m=0

J−1∑

k=I−i

αm
i E
[
Sm
i,k+1 − Ŝm

i,k+1

∣∣∣DI
])2

︸ ︷︷ ︸
squared parameter estimation error

.

For estimators of second moments we have to estimate the model parameters σm1,m2

k .

If the normalizing constant Z
m1,m2

k > 0 one can take the following Dk-unbiased

estimators

σ̂
m1,m2

k :=
1

Z
m1,m2

k

I−1−k∑

i=0

wm1
i,k w

m2
i,k

R
m1,m2

i,k

(
Sm1
i,k+1

Rm1
i,k

− f̂m1
k

)(
Sm2
i,k+1

Rm2
i,k

− f̂m2
k

)
(4.2)

with

Z
m1,m2

k :=

I−1−k∑

i=0

wm1
i,k w

m2
i,k

Rm1
i,k R

m2
i,k

(
1− wm1

i,k − wm2
i,k +R

m1,m2

i,k

I−1−k∑

h=0

wm1
h,kw

m2
h,k

R
m1,m2

h,k

)
.

For Zm1,m2

k = 0 and in particular for I = J one could take the following extrapola-

tions, see Mack [6] for the first part,

σ̂
m,m
J−1 := min

(
(σ̂m,m

J−2 )
2

σ̂
m,m
J−3

, σ̂
m,m
J−3 , σ̂

m,m
J−2

)
, (4.3)

σ̂
m1,m2

J−1 := σ̂
m1,m2

J−2

(
σ̂
m1,m1

J−1 σ̂
m2,m2

J−1

σ̂
m1,m1

J−2 σ̂
m2,m2

J−2

) 1
2

.
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Remark 4.1 The estimation of the model parameters σ
m1,m2

k is a wide field and

you may often find better estimators than presented here. For instance, you may

introduce weighted estimators and use other extrapolations. But since such cus-

tomising usually depends heavily on the analysed data we will not go into details

here.

4.1 Process variance for an accident period

In order to get estimators for the process variance let us start with some computa-

tions of the expectation of products of Sm
i,k.

Lemma 4.2 Assume Sm
i,k satisfy Assumption 2.1. Then for all I + 1 ≤ n ≤ I + J

and arbitrary Dn−1-measurable real numbers gm1,h,j and gm2,h,j we get

Cov




M∑

m1=0

I∑

h1=0

(n−h1)∧J∑

j1=0

gm1,h1,j1
Sm1
h1,j1

,

M∑

m2=0

I∑

h2=0

(n−h2)∧J∑

j2=0

gm2
2,h2,j2

Sm2
h2,j2

∣∣∣∣∣∣
Dn−1




=

M∑

m1,m2=0

J∑

j=n−I

gm1
1,n−j,j g

m2
2,n−j,j σ

m1,m2
j−1 R

m1,m2
n−j,j−1. (4.4)

Proof: Take arbitrary Dn−1-measurable real numbers gm1,h,j and gm2,h,j. Since Sm
h,j

is Dn−1-measurable for all h+ j ≤ n− 1 we get

Cov




M∑

m1=0

I∑

h1=0

(n−h1)∧J∑

j1=0

gm1,h1,j1
Sm1
h1,j1

,

M∑

m2=0

I∑

h2=0

(n−h2)∧J∑

j2=0

gm2
2,h2,j2

Sm2
h2,j2

∣∣∣∣∣∣
Dn−1




=

M∑

m1,m2=0

J∑

j1,j2=n−I

gm1
1,n−j1,j1

gm2
2,n−j2,j2

Cov
[
Sm1
n−j1,j1

, Sm2
n−j2,j2

∣∣∣Dn−1
]

=

M∑

m1,m2=0

J∑

j=n−I

gm1
1,n−j,j g

m2
2,n−j,j σ

m1,m2
j−1 R

m1,m2
n−j,j−1,

where we used the covariance assumption on a LSRM and part c) of Lemma 2.3 for

the last step. ✷

Now fix i1, i2, k1 and k2 with I ≤ i1 + k1 < i2 + k2. Then we get

Cov
[
Sm1
i1,k1+1, S

m2
i2,k2+1

∣∣∣DI
]

= Cov
[
Sm1
i1,k1+1,E

[
Sm2
i2,k2+1

∣∣∣Di2+k2
]∣∣∣DI

]

= Cov
[
Sm1
i1,k1+1,F

m2,i2+k2
i2,k2

Si2+k2

∣∣∣DI
]

...

= Cov
[
Sm1
i1,k1+1,F

m2,i1+k1+1
i2,k2

Si1+k1+1
∣∣∣DI
]

= E
[
Cov

[
Sm1
i1,k1+1,F

m2,i1+k1+1
i2,k2

Si1+k1+1
∣∣∣Di1+k1

]∣∣∣DI
]

+Cov
[
Fm1,i1+k1
i1,k1

Si1+k1 ,Fm2,i1+k1
i2,k2

Si1+k1

∣∣∣DI
]
.
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An iteration of the last step leads to

Cov
[
Sm1
i1,k1+1, S

m2
i2,k2+1

∣∣∣DI
]
=

i1+k1+1∑

n=I+1

E
[
Cov

[
Fm1,n
i1,k1

Sn,Fm2,n
i2,k2

Sn
∣∣∣Dn−1

]∣∣∣DI
]
.

Applying the covariance formula (4.4) we can proceed with

Cov
[
Sm1
i1,k1+1, S

m2
i2,k2+1

∣∣∣DI
]

=

i1+k1+1∑

n=I+1

M∑

l1,l2=0

J∑

j=n−I

σ
l1,l2
j−1 E

[
R

l1,l2
n−j,j−1

∣∣∣DI
](

Fm1,n
i1,k1

)l1
n−j,j

(
Fm2,n
i2,k2

)l2
n−j,j

.

Using the same techniques we get similar formulas for all remaining indices i1, i2, k1

and k2 with i1 + k1, i2 + k2 ≥ I. Finally, we replace all unknown model parameters

by their estimators:

Estimator 4.3 (of the process variance of a single accident period)

Assume Sm
i,k satisfy Assumption 2.1 and take arbitrary DI-measurable factors αm

i ,

0 ≤ m ≤ M . Then the process variance of a single accident period can be estimated

by

V̂ar

[
M∑

m=0

J−1∑

k=I−i

αm
i Sm

i,k+1

∣∣∣∣∣D
I

]
:=

M∑

m1,m2=0

αm1
i αm2

i

J−1∑

k1,k2=I−i

M∑

l1,l2=0

i+(k1∧k2)+1∑

n=I+1

J−1∑

j=n−1−I

σ̂
l1,l2
j R̂

l1,l2
n−1−j,j

(
F̂m1,n
i,k1

)l1
n−1−j,j+1

(
F̂m2,n
i,k2

)l2
n−1−j,j+1

.

Remark 4.4 (The case of non linear exposures R
m1,m2

i,k )

If we weaken the assumption 2.3 on covariances to non-linear exposures

R
m1,m2

i,k =: Γm1,m2

i,k (Si+k) ∈ Di+k ∩ Dk

we will still use the estimate

Ê
[
R

l1,l2
n−j,j−1

∣∣∣DI
]
= Ê

[
Γl1,l2
n−j,j−1(S

n−1)
∣∣∣DI
]
≈ Γl1,l2

n−j,j−1(Ŝ
n−1) =: R̂l1,l2

n−j,j−1,

which is only a very rough estimate.

4.2 Parameter estimation error for an accident period

In order to get an estimator for the parameter estimation error we will apply the

conditional resampling approach, see Wüthrich-Merz [10, Section 3.2.3]. Therefore,
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we will look at

∆i

((
f̂ l
k

)0≤l≤M
0≤k≤J−1

)
:=

(
M∑

m=0

αm
i

J−1∑

k=I−i

E
[
Ŝm
i,k+1 − Sm

i,k+1

∣∣∣DI
])2

(4.5)

=

(
M∑

m=0

αm
i

J−1∑

k=I−i

F̂m,I
i,k SI −

M∑

m=0

αm
i

J−1∑

k=I−i

Fm,I
i,k SI

)2

as a function of the estimated model parameters f̂m
k . The conditional resampling

approach means to estimate ∆i by its expected value under the resampling proba-

bility measure P∗, which is the product measure of

P∗
(
(f̂m

k )0≤m≤M ∈ A
)
:= P

(
(f̂m

k )0≤m≤M ∈ A|DI ∩ Dk

)
.

We denote the expectation, variance and covariance with respect to P∗ by E∗, Var∗

and Cov∗, respectively.

Remark 4.5 From the definition of the conditional resampling measure it follows

that:

1. Under P∗ every collection {f̂m1
k1

, . . . , f̂mn

kn
} with k1 < · · · < kn is a collection

of independent variables.

2. For all 0 ≤ m ≤ M and all 0 ≤ k ≤ J − 1 we have E∗
[
f̂m
k

]
= fm

k .

3. For all 0 ≤ m1,m2 ≤ M and all 0 ≤ k ≤ J − 1 we have

̺
∗m1,m2

k := Cov∗
[
f̂m1
k , f̂m2

k

]
= σ

m1,m2

k

I−1−k∑

i=0

wm1
i,k w

m2
i,k

R
m1,m2

i,k

Rm1
i,k R

m2
i,k

. (4.6)

Using Remark 4.5 we get

∆i ≈ E∗[∆i]= Var∗

[
M∑

m=0

αm
i

J−1∑

k=I−i

Ŝm
i,k+1

]

= E∗



(

M∑

m=0

αm
i

J−1∑

k=I−i

Ŝm
i,k+1

)2

−

(
E∗

[
M∑

m=0

αm
i

J−1∑

k=I−i

Ŝm
i,k+1

])2

. (4.7)

In order to get an estimator for the first addend on the right hand side let us start

with some computations of expectations of products of Ŝm
i,k under P∗:

E∗
[
Ŝm1
i1,k1+1Ŝ

m2
i2,k2+1

]
= E∗

[
Ŝm1
i1,k1+1F̂

m1
i2,k2

Ŝi2+k2
]
,

for all i2 + k2 ≥ I. If k2 > k1 the variables Ŝm1
i1,k1+1 and Ŝi2+k2 do not depend on

f̂m2
k2

and we can use Remark 4.5 in order to obtain

E∗
[
Ŝm1
i1,k1+1Ŝ

m2
i2,k2+1

]
= E∗

[
Ŝm1
i1,k1+1F

m1
i2,k2

Ŝi2+k2
]
. (4.8)
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Analogously we compute for 0 ≤ k ≤ J − 1 and i1, i2 ≥ I − k

E∗
[
Ŝm1
i1,k+1Ŝ

m2
i2,k+1

]
=
(
fm1
k fm2

k + ̺
∗m1,m2

k

)
E∗
[
Γm1
i1,k

Ŝi1+kΓm2
i2,k

Ŝi2+k
]
. (4.9)

Now we want to take the linear operators Fm
i,k out of the expectation. Therefore,

we define the following linear operators:

Hk(τ) : Lk ⊗ Lk → Lk+1 ⊗ Lk+1

by

(
Hk(τ)xy

)m1,m2

i1,k1,i2,k2
(4.10)

:=





F
m1,I∨(i1+k)
i1,k1−1

xF
m2,I∨(i2+k)
i2,k2−1

y, for i1 ∧ i2 ≤ I − k − 1 or k1 ∧ k2 ≤ k,

(fm1
k fm2

k + τ
m1,m2

i1,i2,k
) Γm1

i1,k
xΓm2

i2,k
y, otherwise,

where τ is a M ×M × I × I × (J − 1) matrix of real numbers.

Remark 4.6

• Strictly taken, we had to write Π
L
I∨(i1+k)
0

x and Π
L
I∨(i2+k)
0

y instead of x and y

in the first line of the definition of Hk(τ), respectively.

• F
m1,I∨(i1+k)
i1,k1−1

= Fm1
i1,k

, for i1+k1 > I and k1 = k+1, and F
m1,I∨(i1+k)
i1,k1−1

x = xm1
i1,k1

in all other cases of the first line of the definition of Hk(τ).

Concatenations of those operators will be denoted by

Hk2←k1(τ) :=





Hk2(τ)Hk2−1(τ) · · ·Hk1(τ), for k2 ≥ k1,

ΠLk2+1⊗Lk2+1
, otherwise,

Hm1,m2

i1,k1,i2,k2
(τ)x :=

(
H(k1∨k2)←0(τ)x

)m1,m2

i1,k1+1,i2,k2+1
, (4.11)

where ΠLk2+1⊗Lk2+1
denotes the projection onto Lk2+1 ⊗ Lk2+1.

Corollary 4.7 At point τ = 0 we have

Hm1,m2

i1,k1,i2,k2
(τ)xy = Fm1,I

i1,k1
xFm2,I

i2,k2
y.

Moreover, a linearisation of Hm1,m2

i1,k1,i2,k2
(τ) at τ = 0 yields

Hm1,m2

i1,k1,i2,k2
(τ)xy − Fm1,I

i1,k1
xFm2,I

i2,k2
y (4.12)

≈

k1∧k2∑

j=I−(i1∧i2)

M∑

l1,l2=0

I∑

h1,h2=I−j

(
Fm1,h1+j+1
i1,k1

)l1
h1,j+1

(
Fm2,h2+j+1
i2,k2

)l2
h2,j+1

· τ l1,l2h1,h2,j
Γl1
h1,j

Fh1+j−1←IxΓl2
h2,j

Fh2+j−1←Iy.
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Proof: The first statement of Corollary 4.7 is a direct consequence of the defini-

tion of Hm1,m2

i1,k1,i2,k2
(τ). Moreover, τ l1,l2h1,h2,j

is only contained within the (l1, l2, h1, j +

1, h2, j + 1) coordinate of Hm1,m2

i1,k1,i2,k2
(τ). This proves (4.12). ✷

Iterating (4.8) and (4.9) we get for I ≤ i1 + k1, i2 + k2

E∗
[
Ŝm1
i1,k1+1Ŝ

m2
i2,k2+1

]
= Hm1,m2

i1,k1,i2,k2
(̺∗)SISI (4.13)

with

SISI :=
(
Sm1
i1,j1

Sm2
i2,j2

)0≤m1,m2≤M

i1+j1,i2+j2≤I

and

̺
∗m1,m2

i1,i2,k
:= ̺

∗m1,m2

k . (4.14)

Combining (4.11) with Corollary 4.7 and replacing all unknown parameters by their

estimates we get

Estimator 4.8 (of the single period parameter estimation error)

Assume Sm
i,k satisfy Assumption 2.1 and take arbitrary DI-measurable factors αm

i ,

0 ≤ m ≤ M . Then the parameter estimation error for accident period i can be

estimated by

∆̂i :=

M∑

m1,m2=0

αm1
i αm2

i

J−1∑

k1,k2=I−i

(
Ĥm1,m2

i,k1,i,k2
(̺̂∗)− Ĥm1,m2

i,k1,i,k2
(0)
)
SISI .

where the operator Ĥ(̺̂∗) is defined in the same way as the operator H(̺̂∗), see

(4.10) and (4.11), but with f̂m
k instead of fm

k .

Moreover, a linear approximation for the operator Ĥ(τ) at τ = 0 leads to

∆̂i ≈

M∑

m1,m2=0

αm1
i αm2

i

J−1∑

k1,k2=I−i

k1∧k2∑

j=I−i

M∑

l1,l2=0

I∑

h1,h2=I−j

̺̂∗ l1,l2j R̂l1
h1,j

R̂l2
h2,j

·
(
F̂m1,h1+j+1
i,k1

)l1
h1,j+1

(
F̂m2,h2+j+1
i,k2

)l2
h2,j+1

.

4.3 Single period mean squared error of prediction

Combining the results of the previous two sections we obtain

Estimator 4.9 (of the mse of prediction for a single accident period)

Assume Sm
i,k satisfy Assumption 2.1 and take arbitrary DI-measurable factors αm

i ,
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0 ≤ m ≤ M . Then the mean squared error of prediction for the projected claim

properties of accident period i can be estimated by

m̂se

[
M∑

m=0

αm
i

J−1∑

k=I−i

Ŝm
i,k+1

]

:=
M∑

m1,m2=0

αm1
i αm2

i

J−1∑

k1,k2=I−i

[(
Ĥm1,m2

i,k1,i,k2
(̺̂∗)− Ĥm1,m2

i,k1,i,k2
(0)
)
SISI

+

M∑

l1,l2=0

i+(k1∧k2)+1∑

n=I+1

J−1∑

j=n−1−I

σ̂
l1,l2
j R̂

l1,l2
n−1−j,j

(
F̂m1,n
i,k1

)l1
n−1−j,j+1

(
F̂m2,n
i,k2

)l2
n−1−j,j+1

]
.

Moreover, a linear approximation for the operator Ĥ(τ) at τ = 0 leads to

m̂se

[
M∑

m=0

αm
i

J−1∑

k=I−i

Ŝm
i,k+1

]
≈

M∑

m1,m2=0

αm1
i αm2

i

J−1∑

k1,k2=I−i

M∑

l1,l2=0
[

i+(k1∧k2)+1∑

n=I+1

J−1∑

j=n−1−I

σ̂
l1,l2
j R̂

l1,l2
n−1−j,j

(
F̂m1,n
i,k1

)l1
n−1−j,j+1

(
F̂m2,n
i,k2

)l2
n−1−j,j+1

+

k1∧k2∑

j=I−i

I∑

h1,h2=I−j

̺̂∗ l1,l2j R̂l1
h1,j

R̂l2
h2,j

(
F̂m1,h1+j+1
i,k1

)l1
h1,j+1

(
F̂m2,h2+j+1
i,k2

)l2
h2,j+1

]
.

Remark 4.10 For the Chain-Ladder-Method the stated estimator is the same as

in Buchwalder et al. [2, Approach 3] and the linear approximation is the same as

in Mack [6].

Moreover, for the Extended-Complementary-Loss-Ratio-Method the linear approxi-

mation is the same as in Dahms [3].

4.4 Overall mean squared error of prediction

Since the estimators Ŝm1
i1,k1

and Ŝm2
i2,k2

depend on the observed data of all accident

periods they are usually not uncorrelated. Therefore, the overall mean squared

error of prediction is not equal to the sum of all single period mean squared errors

of prediction. As in Section 4 we can decompose the overall mean squared error of

prediction as follows

mse

[
M∑

m=0

I∑

i=0

αm
i

J−1∑

k=I−i

Ŝm
i,k+1

]

= Var

[
M∑

m=0

I∑

i=0

αm
i

J−1∑

k=I−i

Sm
i,k+1

∣∣∣∣∣D
I

]

︸ ︷︷ ︸
process variance

+

(
M∑

m=0

I∑

i=0

αm
i

J−1∑

k=I−i

E
[
Sm
i,k+1 − Ŝm

i,k+1

∣∣∣DI
])2

︸ ︷︷ ︸
squared parameter estimation error

.
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Using the same arguments like in Sections 4.1 and 4.2 we get

Estimator 4.11 (of the overall mean squared error of prediction)

Assume Sm
i,k satisfy Assumption 2.1 and take arbitrary DI-measurable factors αm

i ,

0 ≤ m ≤ M . Then the overall mean squared error of prediction for the projected

claim properties can be estimated by

m̂se

[
I∑

i=0

M∑

m=0

αm
i

J−1∑

k=I−i

Ŝm
i,k+1

]

:=
I∑

i1,i2=0

M∑

m1,m2=0

αm1
i1

αm2
i2

J−1∑

k1=I−i1

J−1∑

k2=I−i2

[(
Ĥm1,m2

i1,k1,i2,k2
(̺̂∗)− Ĥm1,m2

i1,k1,i2,k2
(0)
)
SISI

+

M∑

l1,l2=0

(i1+k1)∧(i2+k2)+1∑

n=I+1

J−1∑

j=n−1−I

σ̂
l1,l2
j R̂

l1,l2
n−1−j,j

(
F̂m1,n
i1,k1

)l1
n−1−j,j+1

(
F̂m2,n
i2,k2

)l2
n−1−j,j+1

]
.

Moreover, a linear approximation for the operator Ĥ(τ) at τ = 0 leads to

m̂se

[
I∑

i=0

M∑

m=0

αm
i

J−1∑

k=I−i

Ŝm
i,k+1

]
≈

I∑

i1,i2=0

M∑

m1,m2=0

αm1
i1

αm2
i2

J−1∑

k1=I−i1

J−1∑

k2=I−i2

M∑

l1,l2=0
[ (i1+k1)∧(i2+k2)+1∑

n=I+1

J−1∑

j=n−1−I

σ̂
l1,l2
j R̂

l1,l2
n−1−j,j

(
F̂m1,n
i1,k1

)l1
n−1−j,j+1

(
F̂m2,n
i2,k2

)l2
n−1−j,j+1

+

k1∧k2∑

j=I−(i1∧i2)

I∑

h1,h2=I−j

̺̂∗ l1,l2j R̂l1
h1,j

R̂l2
h2,j

(
F̂m1,h1+j+1
i1,k1

)l1
h1,j+1

(
F̂m2,h2+j+1
i2,k2

)l2
h2,j+1

]
.

Remark 4.12 For the Chain-Ladder-Method the stated estimator is the same as

in Buchwalder et al. [2, Approach 3] and the linear approximation is the same as

in Mack [6].

Moreover, for the Extended-Complementary-Loss-Ratio-Method the linear approxi-

mation is the same as in Dahms [3].

5 Solvency reserving risk

In this section we want to look at what we can say at the end of business period I

about the development result related to the estimates Ŝm,I+1
i,k at the end of the next

business period, assuming that we will take the same LSRM . For the projection

of payments this means we want to analyse the profit or loss of the next business

period related to the estimated reserves.
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In order to distinguish between the objects of the previous sections, which belong

to estimation period I, and the objects of the next estimation period I + 1, we will

introduce, if necessary, an additional upper index that indicates the time which the

object belongs to.

Taking the same LSRM means:

Assumption 5.1 There exist DI ∩ Dk-measurable factors 0 ≤ w
m,I+1
I−k,k ≤ 1 with

• Rm
I−k,k = 0 implies w

m,I+1
I−k,k = 0,

• w
m,I+1
i,k = (1− w

m,I+1
I−k,k )w

m,I
i,k for 0 ≤ i ≤ I − 1− k.

Remark 5.2 The above assumption means that we do not change our (relative)

believes into the old development periods and only put some credibility w
m,I+1
I−k,k to

the new encountered development.

The variance minimizing weights, introduced in Remark 3.2, satisfy Assumption 5.1.

The estimates of the model parameters for the next period are given by

f̂
m,I+1
k :=

I−k∑

i=0

w
m,I+1
i,k

Sm
i,k+1

Rm
i,k

, for 1 ≤ k ≤ J − 1. (5.1)

Note, the estimates f̂
m,I+1
k for the model parameters fm

k may depend on Sm
I−k,k+1

and are therefore usually not DI -measurable. Their at time I expected values are

f̄m
k := E

[
f̂
m,I+1
k

∣∣∣DI
]
= (1− w

m,I+1
I−k,k )f̂

m,I
k + w

m,I+1
I−k,k f

m
k . (5.2)

Therefore, the estimate of the at time I expected value of the model parameter

f
m,I+1
k is

̂̄f
m

k = f̂
m,I
k . (5.3)

Using (5.2) we compute for the DI -conditional expected value of the next years

projected claim properties

S̄m
i,k+1 := E

[
Ŝ
m,I+1
i,k+1

∣∣∣DI
]
= F̄m,I+1

i,k FISI , (5.4)

where F̄m,n
i,k is defined in the same way as Fm,n

i,k , see (3.7), but with f̄m
k instead of

fm
k . For the exposures we get

R̄m
i,k := E

[
R̂

m,I+1
i,k

∣∣∣DI
]
= Γm

i,kS̄
i+k =

M∑

l=0

I∑

h=0

(i+k−h)∧k∑

j=0

γ
m,l
i,k,h,jS̄

l
h,j (5.5)

R̄
m1,m2

i,k := E
[
R̂

m1,m2,I+1
i,k

∣∣∣DI
]
= Γm1,m2

i,k S̄i+k =
M∑

l=0

I∑

h=0

(i+k−h)∧k∑

j=0

γ
m1,m2,l
i,k,h,j S̄l

h,j
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with exposure parameter γm,l
i,k,h,j and γ

m1,m2,l
i,k,h,j , see (2.4).

In order to shorten notations we define

F̄m,n
i,k := Fm,n

i,k and Ŝn,I+1 = S̄n := Sn

for n ≤ I, and analogously for the exposures R̂
m,I+1
i,k , R̄

m,I+1
i,k , R̂

m1,m2,I+1
i,k and

R̄
m1,m2,I+1
i,k .

The at time I + 1 observed (claims) development result (CDR) of a linear combi-

nation of claim properties for a single accident period i is given by

CDRI+1
i :=

M∑

m=0

αm
i

J−1∑

k=I−i

(
Ŝ
m,I+1
i,k+1 − Ŝ

m,I
i,k+1

)
, (5.6)

where αm
i are arbitrary DI -measurable real numbers. Since the estimates Ŝ

m,I
i,k

and Ŝ
m,I+1
i,k are unbiased, the expected development result will be zero. Moreover,

because of (5.3) and (5.4), the at time I estimated DI -conditional expected value

of the CDR is zero, too.

Now, we want to look at the uncertainty of the observed development result in terms

of the DI -conditional mean squared error of prediction.

As for the ultimate mean squared error of prediction, see Section 4, we can split the

mse of the observed development result for a single accident period i into a process

variance term and a parameter estimation error term:

mse
[
CDRI+1

i

]
:= E



(

M∑

m=0

αm
i

J−1∑

k=I−i

(
Ŝ
m,I+1
i,k+1 − Ŝ

m,I
i,k+1

)
− 0

)2
∣∣∣∣∣∣
DI




= Var

[
M∑

m=0

αm
i

J−1∑

k=I−i

Ŝ
m,I+1
i,k+1

∣∣∣∣∣D
I

]
+

(
E

[
M∑

m=0

αm
i

J−1∑

k=I−i

(
Ŝ
m,I+1
i,k+1 − Ŝ

m,I
i,k+1

)∣∣∣∣∣D
I

])2
.

5.1 Process variance of a single period CDR

We will split the process variance term of the CDR as follows

Var

[
M∑

m=0

αm
i

J−1∑

k=I−i

Ŝ
m,I+1
i,k+1

∣∣∣∣∣D
I

]
(5.7)

= E



(

M∑

m=0

αm
i

J−1∑

k=I−i

Ŝ
m,I+1
i,k+1

)2
∣∣∣∣∣∣
DI


−

(
E

[
M∑

m=0

αm
i

J−1∑

k=I−i

Ŝ
m,I+1
i,k+1

∣∣∣∣∣D
I

])2

.

In order to get estimators for the first addend on the right hand side let us start with

some computations of DI-conditional expectations of products of Ŝm,I+1
i,k . Therefore,
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take k1 < k2 and k2 + i2 ≥ I. Then we get

E
[
Ŝ
m1,I+1
i1,k1+1 Ŝ

m2,I+1
i2,k2+1

∣∣∣DI
]

= E
[
E
[
Ŝ
m1,I+1
i1,k1+1 Ŝ

m2,I+1
i2,k2+1

∣∣∣DI
k2

]∣∣∣DI
]

= E
[
Ŝ
m1,I+1
i1,k1+1 F̄

m2
i2,k2

Ŝi2+k2,I+1
∣∣∣DI
]
.

In case of k1 = k2 =: k we compute

E
[
Ŝ
m1,I+1
i1,k+1 Ŝ

m2,I+1
i2,k+1

∣∣∣DI
]

=





E
[
(f̄m1

k f̄m2
k + ¯̺m1,m2

i1,i2,k
)R̂m1,I+1

i1,k
R̂

m2,I+1
i2,k

∣∣∣DI
]
, for i1, i2 > I − k,

E
[
(fm1

k f̄m2
k + ¯̺m1,m2

i1,i2,k
)R̂m1,I+1

i1,k
R̂

m2,I+1
i2,k

∣∣∣DI
]
, for i2 > i1 = I − k,

E
[
(f̄m1

k fm2
k + ¯̺m1,m2

i1,i2,k
)R̂m1,I+1

i1,k
R̂

m2,I+1
i2,k

∣∣∣DI
]
, for i1 > i2 = I − k,

E
[
(fm1

k fm2
k + ¯̺m1,m2

i1,i2,k
)R̂m1,I+1

i1,k
R̂

m2,I+1
i2,k

∣∣∣DI
]
, for i1 = i2 = I − k,

with

¯̺m1,m2

i1,i2,k
:=





Cov
[
f̂
m1,I+1
k , f̂

m2,I+1
k

∣∣∣DI
k

]
, for i1, i2 > I − k,

Cov

[
Sm1
i1,k+1

Rm1
i1,k

, f̂
m2,I+1
k

∣∣∣∣∣D
I
k

]
, for i2 > i1 = I − k,

Cov

[
f̂
m1,I+1
k ,

Sm2
i2,k+1

Rm2
i2,k

∣∣∣∣∣D
I
k

]
, for i1 > i2 = I − k,

Cov

[
Sm1
i1,k+1

Rm1
i1,k

,
Sm2
i2,k+1

Rm2
i2,k

∣∣∣∣∣D
I
k

]
, for i1 = i2 = I − k.

A short calculation yields

¯̺m1,m2

i1,i2,k
=





w
m1,I+1
I−k,k w

m2,I+1
I−k,k σ

m1,m2

k

R
m1,m2

I−k,k

Rm1
I−k,kR

m2
I−k,k

, for i1, i2 > I − k,

w
m2,I+1
I−k,k σ

m1,m2

k

R
m1,m2

I−k,k

Rm1
I−k,kR

m2
I−k,k

, for i2 > i1 = I − k,

w
m1,I+1
I−k,k σ

m1,m2

k

R
m1,m2

I−k,k

Rm1
I−k,kR

m2
I−k,k

, for i1 > i2 = I − k,

σ
m1,m2

k

R
m1,m2

I−k,k

Rm1
I−k,kR

m2
I−k,k

, for i1 = i2 = I − k.

Finally we use the same arguments like in Section 4.2 and replace all unknown

parameters by their estimators at time I. This leads to:

Estimator 5.3 (of the process variance of CDRI+1
i )

Assume Sm
i,k satisfy Assumptions 2.1 and 5.1 and take arbitrary DI-measurable fac-

tors αm
i , 0 ≤ m ≤ M . Then the process variance of the claim development result of
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a single accident period can be estimated by

V̂ar

[
M∑

m=0

αm
i

J−1∑

k=I−i

Ŝ
m,I+1
i,k+1

∣∣∣∣∣D
I

]

:=

M∑

m1,m2=0

αm1
i αm2

i

J−1∑

k1,k2=I−i

(
Ĥm1,m2

i,k1,i,k2
(̺̂̄)− Ĥm1,m2

i,k1,i,k2
(0)
)
SISI .

Moreover, a linear approximation for the operator Ĥ(τ) at τ = 0 leads to

V̂ar

[
M∑

m=0

αm
i

J−1∑

k=I−i

Ŝ
m,I+1
i,k+1

∣∣∣∣∣D
I

]

≈

M∑

m1,m2=0

αm1
i αm2

i

J−1∑

k1,k2=I−i

M∑

l1,l2=0

k1∧k2∑

j=I−i

I∑

h1,h2=I−j

̺̂̄l1,l2
h1,h2,j

R̂l1
h1,j

R̂l2
h2,j

·
(
F̂m1,h1+j+1
i,k1

)l1
h1,j+1

(
F̂m2,h2+j+1
i,k2

)l2
h2,j+1

.

5.2 Parameter estimation error of a single period CDR

As for the ultimate parameter estimation error in Section 4.2 we use the resampling

method and estimate

∆̄i :=
M∑

m1,m2=0

αm1
i αm2

i

J−1∑

k1,k2=I−i

(
S̄m1
i,k1+1 − Ŝ

m2,I
i,k1+1

)(
S̄m1
i,k2+1 − Ŝ

m2,I
i,k2+1

)

by its expectation under the resampling measure P∗. Hence, we have to analyse

terms of the form

E∗
[
S̄m1
i1,k1+1S̄

m2
i2,k2+1

]
−E∗

[
S̄m1
i1,k1+1Ŝ

m2,I
i2,k2+1

]
−E∗

[
Ŝ
m1,I
i1,k1+1S̄

m2
i2,k2+1

]
+E∗

[
Ŝ
m1,I
i1,k1+1Ŝ

m2,I
i2,k2+1

]
.

(5.8)

We already know the last addend from Section 4.2:

E∗
[
Ŝ
m1,I
i1,k1+1Ŝ

m2,I
i2,k2+1

]
= Hm1,m2

i1,k1,i2,k2
(̺∗)SISI .

The other three addends of the right hand side of (5.8) will by analyse in the same

way. Using the properties of the resampling measure P∗ stated in Remark 4.5 we

obtain

E∗
[
S̄m1
i1,k1+1S̄

m2
i2,k2+1

]
= E∗

[
Fm1
i1,k1

S̄i1+kS̄m2
i2,k2

]

E∗
[
Ŝ
m1,I
i1,k1+1S̄

m2
i2,k2+1

]
= E∗

[
Fm1
i1,k1

Ŝi1+k,IS̄m2
i2,k2

]

E∗
[
S̄m1
i1,k1+1Ŝ

m2,I
i2,k2+1

]
= E∗

[
Fm1
i1,k1

S̄i1+kŜ
m2,I
i2,k2

]
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for k1 > k2 and i1 + k1 ≥ I. By symmetry we get analogue results for k2 > k1 and

i2 + k2 ≥ I.

In the case of k1 = k2 =: k we have

E∗
[
S̄m1
i1,k+1S̄

m2
i2,k+1

]
= E∗

[
(f̄m1

k f̄m2
k + ̺

∗12 m1,m2

i1,i2,k
)Γm1

i1,k
S̄i1+kΓm2

i2,k
S̄i2+k

]

E∗
[
Ŝ
m1,I
i1,k+1S̄

m2
i2,k+1

]
= E∗

[
(fm1

k f̄m2
k + ̺

∗2 m1,m2

i1,i2,k
)Γm1

i1,k
Ŝi1+k,IΓm2

i2,k
S̄i2+k

]

E∗
[
S̄m1
i1,k+1Ŝ

m2,I
i2,k+1

]
= E∗

[
(f̄m1

k fm2
k + ̺

∗1 m1,m2

i1,i2,k
)Γm1

i1,k
S̄i1+kΓm2

i2,k
Ŝi2+k,I

]

with

̺
∗1 m1,m2

i1,i2,k
:=





(
1− w

m1,I+1
I−k,k

)
̺
∗m1,m2

i1,i2,k
, for i1 + k > I and i2 + k ≥ I,

0, otherwise,

̺
∗2 m1,m2

i1,i2,k
:=





(
1− w

m2,I+1
I−k,k

)
̺
∗m1,m2

i1,i2,k
, for i1 + k ≥ I and i2 + k > I,

0, otherwise,

̺
∗12 m1,m2

i1,i2,k
:=





(
1− w

m1,I+1
I−k,k

)(
1− w

m2,I+1
I−k,k

)
̺
∗m1,m2

i1,i2,k
, for i1 + k, i2 + k > I,

0, otherwise.

Summarizing all parts and replacing all unknown parameters by their estimators

yields

Estimator 5.4 (of the parameter estimation error of CDRI+1
i )

Assume Sm
i,k satisfy Assumptions 2.1 and 5.1 and take arbitrary DI-measurable fac-

tors αm
i , 0 ≤ m ≤ M . Then the parameter estimation error of the claim develop-

ment result of a single accident period can be estimated by

̂̄∆i :=
M∑

m1,m2=0

αm1
i αm2

i

J−1∑

k1,k2=I−i

(
Ĥm1,m2

i,k1,i,k2
(̺̂∗)− Ĥm1,m2

i,k1,i,k2
(̺̂∗1)

− Ĥm1,m2

i,k1,i,k2
(̺̂∗2) + Ĥm1,m2

i,k1,i,k2
(̺̂∗12)

)
ŜI ŜI .

Moreover, a linear approximation for the operator Ĥ(τ) at τ = 0 leads to

̂̄∆i ≈

M∑

m1,m2=0

αm1
i αm2

i

J−1∑

k1,k2=I−i

M∑

l1,l2=0

k1∧k2∑

j=I−i

I∑

h1,h2=I−j

(
̺̂∗ l1,l2h1,h2,j

− ̺̂∗1 l1,l2h1,h2,j
− ̺̂∗2 l1,l2h1,h2,j

+ ̺̂∗12 l1,l2
h1,h2,j

)

·
(
F̂m1,h1+j+1
i,k1

)l1
h1,j+1

(
F̂m2,h2+j+1
i,k2

)l2
h2,j+1

R̂l1
h1,j

R̂l2
h2,j

.

5.3 Mean squared error of a single period CDR

Combining the results of the previous two sections we obtain:
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Estimator 5.5 (of the mean squared error of CDRI+1
i )

Assume Sm
i,k satisfy Assumptions 2.1 and 5.1 and take arbitrary DI-measurable fac-

tors αm
i , 0 ≤ m ≤ M . Then the mean squared error of the claim development result

of a single accident period can be estimated by

m̂se
[
CDRI+1

i

]
:=

M∑

m1,m2=0

αm1
i αm2

i

J−1∑

k1,k2=I−i

(
Ĥm1,m2

i,k1,i,k2
(̺̂̄)− Ĥm1,m2

i,k1,i,k2
(0)

+Ĥm1,m2

i,k1,i,k2
(̺̂∗)− Ĥm1,m2

i,k1,i,k2
(̺̂∗1)

−Ĥm1,m2

i,k1,i,k2
(̺̂∗2) + Ĥm1,m2

i,k1,i,k2
(̺̂∗12)

)
SISI.

Moreover, a linear approximation for the operator Ĥ(τ) at τ = 0 leads to

m̂se
[
CDRI+1

i

]
≈

M∑

m1,m2=0

αm1
i αm2

i

J−1∑

k1,k2=I−i

M∑

l1,l2=0

k1∧k2∑

j=I−i

I∑

h1,h2=I−j(
̺̂̄l1,l2
h1,h2,j

+ ̺̂∗ l1,l2h1,h2,j
− ̺̂∗1 l1,l2h1,h2,j

− ̺̂∗2 l1,l2h1,h2,j
+ ̺̂∗12 l1,l2h1,h2,j

)

·
(
F̂m1,h1+j+1
i,k1

)l1
h1,j+1

(
F̂m2,h2+j+1
i,k2

)l2
h2,j+1

R̂l1
h1,j

R̂l2
h2,j

.

5.4 Mean squared error of the overall CDR

As for the single period CDR we split the mean squared error of the overall CDR

into a process variance and parameter estimation error term:

mse

[
I∑

i=0

CDRI+1
i

]
:= E



(

I∑

i=0

M∑

m=0

αm
i

J−1∑

k=I−i

(
Ŝ
m,I+1
i,k+1 − Ŝ

m,I
i,k+1

)
− 0

)2
∣∣∣∣∣∣
DI




=Var

[
I∑

i=0

M∑

m=0

αm
i

J−1∑

k=I−i

Ŝ
m,I+1
i,k+1

∣∣∣∣∣D
I

]
+

(
E

[
I∑

i=0

M∑

m=0

αm
i

J−1∑

k=I−i

(
Ŝ
m,I+1
i,k+1 − Ŝ

m,I
i,k+1

)∣∣∣∣∣D
I

])2

.

Since Ŝ
m1,I+1
i1,k1

and Ŝ
m2,I+1
i2,k2

depend on the new observed diagonal they are usually

not DI -conditionally uncorrelated. Therefore, the overall process error as well as

the parameter estimation error are not equal to the sum of all single period process

and parameter errors, respectively.

Analogue to Sections 5.1 and 5.2 we can calculate the additional terms and get

Estimator 5.6 (of the mean squared error of the overall CDR)

Assume Sm
i,k satisfy Assumptions 2.1 and 5.1 and take arbitrary DI-measurable fac-

tors αm
i , 0 ≤ m ≤ M . Then the mean squared error of the overall claim development
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result can be estimated by

m̂se

[
I∑

i=0

CDRI+1
i

]
:=

I∑

i1,i2=0

M∑

m1,m2=0

αm1
i1

αm2
i2

J−1∑

k1=I−i1

J−1∑

k2=I−i2

(5.9)

(
Ĥm1,m2

i1,k1,i2,k2
(̺̂̄)− Ĥm1,m2

i1,k1,i2,k2
(0) + Ĥm1,m2

i1,k1,i2,k2
(̺̂∗)− Ĥm1,m2

i1,k1,i2,k2
(̺̂∗1)

− Ĥm1,m2

i1,k1,i2,k2
(̺̂∗2) + Ĥm1,m2

i1,k1,i2,k2
(̺̂∗12)

)
SISI.

Moreover, a linear approximation for the operator Ĥ(τ) at τ = 0 leads to

m̂se

[
I∑

i=0

CDRI+1
i

]

≈

I∑

i1,i2=0

M∑

m1,m2=0

αm1
i1

αm2
i2

J−1∑

k1=I−i1

J−1∑

k2=I−i2

M∑

l1,l2=0

k1∧k2∑

j=I−(i1∧i2)

I∑

h1,h2=I−j(
̺̂̄l1,l2
h1,h2,j

+ ̺̂∗ l1,l2h1,h2,j
− ̺̂∗1 l1,l2h1,h2,j

− ̺̂∗2 l1,l2h1,h2,j
+ ̺̂∗12 l1,l2h1,h2,j

)

·
(
F̂m1,h1+j+1
i1,k1

)l1
h1,j+1

(
F̂m2,h2+j+1
i2,k2

)l2
h2,j+1

R̂l1
h1,j

R̂l2
h2,j

.

Remark 5.7 For the Chain-Ladder- and the Extended-Complementary-Loss-Ratio-

Method the linear approximation is the same as in Buchwalder et al. [2, Approach 3]

and Dahms-Merz-Wüthrich [4], respectively.

If at time I we do not believe in the development of the next period, that means if

we take all wm,I+1
I−k,k = 0, the last four terms of (5.9) and its linearisation will vanish.

This means the mean squared error of the overall CDR is the sum of the process

variance terms

σ̂
m1,m2
j R

m1,m2

h,j

transferred to the ultimate by

F̂m1,h+j+1
i1,k1

F̂m2,h+j+1
i2,k2

.

Moreover, increasing the credibility w
m,I+1
I−k,k we give to the development of the next

period will increase the part of the ultimate uncertainty that belongs to the develop-

ment of the next period.

The technically Assumption 5.1 could be weakened to arbitrary DI ∩Dk-measurable

weights w
m,I+1
i,k which satisfy the normalizing assumption. But in general this will

lead to

Ê
[
f̂
m,I+1
k

∣∣∣DI
]
6= f̂

m,I+1
k ,
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which means that at time I the estimated expected CDR would not be zero. This

does not get along with most of the reserving standards. Moreover, we would have

to be a bit more careful with the resampling.

6 Two examples

In the following we will present two examples of LSRMs. The first one illustrates

the power of LSRMs if we want to analyse different kinds of reserves (or claims) by

using different methods for the estimation without losing the ability to estimate the

mean squared error of prediction of the overall ultimate outcome and of the overall

claims development result. The second example shows how different methods may

be mixed in order to estimate the reserves and the corresponding mean squared

errors of prediction of the ultimate outcome and of the claims development result.

A VBA example implementation can be obtained from the author.

6.1 Example 1

The first example is an accident portfolio where we have three types of liabilities:

• Medical expenses (ME) will be estimated using the Chain-Ladder-Method.

The motivation for the choice of this method (exposure) is mainly that it

worked fine in the past. Data are provided in Table 3.

• Payments for incapacitation for work (IW) are by law proportional

to the insured salary, which is limited to a maximum amount. Moreover,

during accident period 7 the maximum insured salary has been increased by

about 20%, valid for all claims happening afterwards. Therefore, we think

the Complementary-Loss-Ratio-Method with the insured salary as external

exposure is a good method to estimate the corresponding reserves. Data are

provided in Tables 4 and 5.

• Subrogation (Sub) possibilities are huge. The reason is that many claims

are caused by car accidents and that by law the accident insurer of the insured

persons has to pay first and may take subrogation against the motor liability

insurer afterwards. Therefore, we assume that the amount of possible subro-

gation is proportional to the total amount that already had been paid, i.e. to
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ME+IW+Sub. Data are provided in Table 6.

For the coupling of those three types of payments we choose the cumulative total

payments, i.e. Rm1,m2

i,k is the sum of all payments (including subrogation) for all

claims of accident period i up to development period k.

For the estimation we used the standards weights of (3.3) and the corresponding

unbiased estimators for the model parameters (3.1), (4.2) and (4.3). Note, a few of

the estimated correlation matrices for development period 6 and 7 are slightly non-

positive defined. We believe that this is more an estimation problem than a model

problem and we could change the estimated σ̂
m1,m2

k slightly in order to get always

non-negative defined correlation matrices and only change the resulting MSEP and

CDR by less than 0.5%. Therefore, we did not do that.

Table 1 shows the resulting estimates for the reserves, the MSEP and the CDR.

In the last column we added the corresponding results of an overall Chain-Ladder-

Method. Note, the difference between the shown figures and their linear approx-

imations are less than 0.03. We see that the total reserves of the LSRM are

much higher (11%) than the Chain-Ladder-Reserves. The main reason is that the

Complementary-Loss-Ratio-Method fits the special development of the payments

for IW better than the Chain-Ladder-Method. Moreover, the subrogation potential

has been increased by the higher expected total payments.

Taking the Complementary-Loss-Ratio- instead of the Chain-Ladder-Method for

the projection of IW is only important for the second development period. This

can be verified by backtesting, but we do not have a good explanation for this

behaviour. Since other parameters which have an impact on IW, like a change in

the general economic situation, are not reflected within the insured salary it may

be a further improvement to the model to choose the insured salary as exposure

for the second development period and switch to the Chain-Ladder-Method for all

other development periods.

The differences of the MSEP and the CDR between the LSRM and the Chain-

Ladder-Method are not so significant, which confirms that neither the MSEP nor the

CDR should be used to decide which method is the best. We strongly recommend

to look for good exposure measures Rm
i,k that can be motivated by other facts than

triangle based statistics.
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ME IW Sub Total Total CL

Reserves 81˙954 125˙809 -46˙443 161˙319 144˙788

MSEP 3˙777 5˙991 4˙975 8˙504 8˙633

CDR 2˙795 4˙723 3˙208 6˙088 6˙484

Table 1: Results of Example 1

6.2 Example 2

In this example we want to show how LSRMs may be used in order to combine

method based results with actuarial judgement. For instance, assume we have

projected payments and reported amounts (or incurred) separately with some LSRM

(the method based results). Now we look at those projections and decide about

a final ultimate, which is a linear combination of the two projections (actuarial

judgement). If we introduce in addition a coupling exposure R
0,1
i,k we automatically

get a corresponding estimate of the overall uncertainty and the uncertainty of the

claims development result.

As example we take the data of Dahms [3, Example 1]. The triangles are shown in

Tables 7 and 8. We will apply the following two LSRMs:

• ECLRM: The Extended-Complementary-Loss-Ratio-Method, see Section 2.4.

We take the same parameter as in Dahms [3]. Note, the parameters σ̂m1,m2

k of

Dahms [3] are not the variance minimising estimators for σm1,m2

k as presented

in (4.2), but the effect on the estimators for the uncertainty is less than 0.5%.

• CL: We project payments S0
i,k and reported amounts S1

i,k separately by the

Chain-Ladder-Method and couple the projections by the exposure

R
0,1
i,k :=

k∑

j=0

S0
i,j + S1

i,j.

For the coupling of the projected estimates we take a credibility approach that is a

generalisation of the credibility interpretation of the Bornhuetter-Ferguson-Method,

which is the credibility mixture of a projected ultimate Ci,J and an external given

ultimate Ui. The credibility weight given to Ui is proportional to the distance of

the projected ultimate and the last known value Ci,I−i. This means we look at the
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credibility mixture

Ci,I−i

Ci,J

Ci,J +
Ci,J − Ci,I−i

Ci,J

Ui =
Ci,I−i

Ci,J

Ci,J + (1−
Ci,I−i

Ci,J

)Ui.

This works fine as long as Ci,I−i ≤ Ci,J . If this is not the case we could take
Ci,J

Ci,I−i

instead of
Ci,I−i

Ci,J
. Finally, generalising the above formula to M projected ultimates

we get the following credibility mixture

∑M
m=0 α

m
i Cm

i,J∑M
m=0 α

m
i

,

with

αm
i :=

(
Cm
i,I−i

Cm
i,J

∧
Cm
i,J

Cm
i,I−i

)
.

Reserves MSEP MSEP proxy CDR CDR proxy

CL Paid 10˙165˙612 1˙517˙861 1˙517˙480 1˙004˙481 1˙004˙164

CL Incurred 10˙665˙287 455˙802 455˙794 347˙709 347˙698

Mixed CL 10˙539˙276 676˙047 675˙927 478˙785 478˙688

ECLRM Paid 10˙728˙771 467˙964 467˙814 346˙640 346˙576

ECLRM Incurred 10˙728˙771 472˙131 471˙873 350˙692 350˙534

Mixed ECLRM 10˙728˙771 469˙518 469˙324 348˙110 348˙009

Table 2: Estimates of Example 2

Tables 2 shows the resulting estimates for the reserves, for the mean squared error of

prediction (MSEP) and for the uncertainty of the claims development result (CDR).

Moreover, the table contains the linear approximations of the presented estimators.

Note, they differ from their original values by less than 0.1%.

For the estimation of the reserves within the ECLRM the credibility mixture has no

effect, because this method already combines both triangles in such a way that the

projection of payments lead to the same estimated reserves like the projection of

reported amounts. But in order to get estimates for the MSEP and the uncertainty

of the CDR such a credibility mixture may be useful, although in this example the

corresponding values differ only slightly. The linear approximations are the same

as presented in Dahms [3] and Dahms-Merz-Wüthrich [4].

The credibility weighted estimates for the Chain-Ladder-Methods tent more in the

direction of the projection of the reported amounts. But this does not have to be

the case. Although the weighted estimates for each single accident period always
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lie between the corresponding two estimates of the separate projections the overall

estimates (for all accident periods) do not have to be between the corresponding

two estimates of the separate projections.

7 Conclusion

Up to now in most cases discussions about the choice of reserving methods were

more philosophic than scientific. By introducing LSRMs we want to encourage

actuaries to spend more time on the investigation of drivers (exposures) behind the

development of portfolios, claims and claim properties. If such a driver is, at least

heuristically, identified and if the dependence structure is linear we have a very good

reason to look at the corresponding LSRM for reserving purposes. This means the

discussion about the choice may now be based on heuristic reasons about exposures

driving the claims development, which in our opinion is much better than a pure

philosophic approach.
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AP \ DP 0 1 2 3 4 5 6 7 8

0 32˙050 63˙514 67˙370 69˙284 70˙321 70˙977 71˙332 71˙482 71˙548

1 30˙773 61˙573 66˙438 68˙621 70˙325 71˙423 72˙083 72˙307

2 29˙605 59˙597 64˙276 67˙368 69˙235 70˙322 71˙141

3 30˙808 60˙403 66˙026 70˙363 72˙279 73˙266

4 30˙657 63˙370 68˙526 70˙632 72˙410

5 35˙212 69˙321 74˙343 76˙685

6 37˙919 74˙154 80˙108

7 38˙967 78˙810

8 39˙855

Table 3: Cumulative medical expenses (ME) of Example 1

AP \ DP 0 1 2 3 4 5 6 7 8

0 48˙629 100˙963 110˙555 114˙119 116˙646 117˙497 117˙604 117˙643 117˙663

1 45˙155 95˙475 106˙939 112˙709 116˙332 117˙557 117˙964 118˙116

2 44˙097 92˙817 103˙801 108˙188 110˙239 110˙983 111˙171

3 42˙129 89˙627 101˙297 105˙186 107˙232 108˙126

4 42˙142 90˙153 100˙367 103˙543 104˙532

5 51˙009 103˙592 114˙433 117˙697

6 46˙897 98˙409 110˙961

7 47˙179 102˙408

8 49˙928

Table 4: Cumulative payments for incapacitation for work (IW) of Example 1
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AP Salary

0 98˙982

1 96˙267

2 99˙243

3 100˙374

4 107˙739

5 110˙798

6 107˙097

7 118˙494

8 135˙846

Table 5: Insured salary of Example 1

AP \ DP 0 1 2 3 4 5 6 7 8

0 -593 -4˙144 -5˙678 -6˙851 -7˙869 -9˙962 -12˙064 -12˙877 -13˙276

1 -488 -3˙239 -5˙115 -6˙280 -7˙676 -9˙444 -10˙771 -11˙080

2 -506 -2˙882 -4˙799 -6˙612 -8˙582 -10˙095 -10˙845

3 -567 -3˙757 -6˙411 -8˙983 -11˙010 -12˙161

4 -750 -3˙744 -6˙318 -7˙411 -8˙149

5 -698 -5˙378 -8˙622 -9˙503

6 -1˙432 -5˙826 -8˙093

7 -1˙370 -4˙765

8 -1˙018

Table 6: Cumulative subrogation (Sub) of Example 1
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AP \ DP 0 1 2 3 4 5 6 7 8 9

0 1˙216˙632 1˙347˙072 1˙786˙877 2˙281˙606 2˙656˙224 2˙909˙307 3˙283˙388 3˙587˙549 3˙754˙403 3˙921˙258

1 798˙924 1˙051˙912 1˙215˙785 1˙349˙939 1˙655˙312 1˙926˙210 2˙132˙833 2˙287˙311 2˙567˙056

2 1˙115˙636 1˙387˙387 1˙930˙867 2˙177˙002 2˙513˙171 2˙931˙930 3˙047˙368 3˙182˙511

3 1˙052˙161 1˙321˙206 1˙700˙132 1˙971˙303 2˙298˙349 2˙645˙113 3˙003˙425

4 808˙864 1˙029˙523 1˙229˙626 1˙590˙338 1˙842˙662 2˙150˙351

5 1˙016˙862 1˙251˙420 1˙698˙052 2˙105˙143 2˙385˙339

6 948˙312 1˙108˙791 1˙315˙524 1˙487˙577

7 917˙530 1˙082˙426 1˙484˙405

8 1˙001˙238 1˙376˙124

9 841˙930

Table 7: Cumulative payments of Example 2

AP \ DP 0 1 2 3 4 5 6 7 8 9

0 3˙362˙115 5˙217˙243 4˙754˙900 4˙381˙677 4˙136˙883 4˙094˙140 4˙018˙736 3˙971˙591 3˙941˙391 3˙921˙258

1 2˙640˙443 4˙643˙860 3˙869˙954 3˙248˙558 3˙102˙002 3˙019˙980 2˙976˙064 2˙946˙941 2˙919˙955

2 2˙879˙697 4˙785˙531 4˙045˙448 3˙467˙822 3˙377˙540 3˙341˙934 3˙283˙928 3˙257˙827

3 2˙933˙345 5˙299˙146 4˙451˙963 3˙700˙809 3˙553˙391 3˙469˙505 3˙413˙921

4 2˙768˙181 4˙658˙933 3˙936˙455 3˙512˙735 3˙385˙129 3˙298˙998

5 3˙228˙439 5˙271˙304 4˙484˙946 3˙798˙384 3˙702˙427

6 2˙927˙033 5˙067˙768 4˙066˙526 3˙704˙113

7 3˙083˙429 4˙790˙944 4˙408˙097

8 2˙761˙163 4˙132˙757

9 3˙045˙376

Table 8: Cumulative reported amounts of Example 2
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