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Abstract

In this article we want to motivate and analyse a wide family of reserving models,
called linear stochastic reserving methods (LSRMs). The main idea behind them is
the assumption that the (conditionally) expected changes of claim properties during
a development period are proportional to exposures which depend linearly on the
past. This means the discussion about the choice of reserving methods can be
based on heuristic reasons about exposures driving the claims development, which
in our opinion is much better than a pure philosophic approach. Moreover, the
assumptions of LSRMs do not include the independence of accident periods.

We will see that many common reserving methods, like the Chain-Ladder-Method,
the Bornhuetter-Ferguson-Method and the Complementary-Loss-Ratio-Method, can
be interpreted in this way. But using the LSRM framework you can do more. For
instance you can couple different triangles via exposures. This leads to reserving
methods which look at a whole bundle of triangles at once and use the information
of all triangles in order to estimate the future development of each of them.

We will present unbiased estimators for the expected ultimate and estimators for
the mean squared error of prediction, which may become an integral part of IFRS 4.
Moreover, we will look at the one period solvency reserving risk, which already is
an important part of Solvency II, and present a corresponding estimator.

Finally we will present two examples that illustrate some features of LSRMs.
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SOLVENCY RESERVING RISK, CLAIMS DEVELOPMENT RESULT.
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1 Introduction

A main task of actuaries is to analyse random claim properties and project their
development. This often includes the combination of several sources of information,
but most of the standard reserving models cannot properly combine such informa-
tion. For instance, they only project payments or reported amounts separately,
but cannot combine both. In recent years several authors have studied models
that can be used in specific situations in order to analyse different claim proper-
ties simultaneously, see for instance Quarg-Mack [12], Halliwell [5], Dahms [3] and
Wiithrich-Merz [11].

In this paper we will introduce a wide class of stochastic reserving methods that can
deal with several claim properties simultaneously. The main idea behind them is
the assumption that the (conditionally) expected changes of claim properties during
a development period are proportional to exposures which depend linearly on the
past of claim properties. Therefore, we will call such methods linear stochastic
reserving methods or LSRMs. Another important property of LSRMs is that they
allow for various dependencies of accident periods. Many of the classical reserving
methods, like the Chain-Ladder-Method, the Complementary-Loss-Ratio-Method
and the Bornhuetter-Ferguson-Method, are LSRMs, see Sections 2.TH2.4]

We will derive estimators for the ultimate outcome of claim properties (Section [3)),
analyse the overall uncertainty of these estimators (Section M) and the one period
uncertainty of the claims development result (Section [H). The analysis of the overall
uncertainty may become an integral part of IFRS 4 and the analysis of the uncer-
tainty of the claims development result already is an important part of Solvency
II. Moreover, we will see that in the case of some classical reserving methods those
estimators are the same as introduced before by other authors, see for instance
Mack [6], Buchwalder et al. [2] and Dahms-Merz-Wiithrich [4].

In Section [l we will present and discuss two examples of LSRMs based on real data.
We will not discus the question which method is the best for the projection of specific
data. Although this is a very important question it is too complex for this paper.
Moreover, we think that for the model selection non triangle based information is of
great importance, see the example of Section [6.1], and it is very difficult to include

such information into an analytic triangle based rating of methods.



2 The model

Let S{:}g, 0<m<M,0<i<1I, 0<k<J, denote the incremental value of the
m-~th claim property of the i-th accident period during the k-th development period.
We assume that I > J and that there is no development of any claim property after
development period J, which means we do not discuss any tail development. Such
claim properties may be the usual candidates like payments, reported amounts and
number of reported claims or even more special constructions like payments after
reopening.

Our model contains three natural time lines: accident periods or rows, development
periods or columns and business periods or lower-left to upper-right diagonals. We
will use the indices i and h for accident periods, j and k for development periods, [
and m for claim properties and n for business periods, see Figure [Il

By " and Ly we denote the linear spaces generated by all increments S{’} up to
business period n and development period k, respectively. Moreover, by L} we

denote the linear space generated by I* and Ly, , i.e.

(2% SN B V|

ij - Liyg

M
L, = Z

> alsy aleRy, (2.1)

where aAb and aVb denote the minimum and maximum of the real numbers a and b,
respectively. The o-algebra of all information of accident period ¢ up to development
period k is denoted by B; ;. Moreover, we denote the o-algebras generated by L",
Ly and I} by D", Dy and Dy, respectively, i.e.

BM::U(SZ}: 0<m< M, Ogjgk), ’DkizU(Lk):U<UBi,k>a

I
Dr:=0c(Ll") =0 <U Bi,(n—i)/\]) ) Dy :=o(l}) =0
=0

see Figure [Il We call the information D?’k the past of Sﬁ 1 0Sm < M.
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Figure 1: Claim property triangle

Assumption 2.1 We call the stochastic model of the increments S7} a linear

stochastic reserving method (LSRM) if there exist constants f[" and aml’mz such

that

i) for all i, m and k the expectation of the claim property ST 1 under the con-
dition of all information of its past D}j s proportional to an exposure R

contained in VTR N 1Ly, i.e.
B[S [P = S RE, € L N1y (2.2)
ii) for alli, my, my and k the covariance of the claim properties S;}! 1 and S]? ol

under the condition of all information of their past D,ij s proportional to an

exposure R "™ contained in L*c N Ly, ie.

Cov ST 1, ST [DETE] = o™ REE™ € LV Ly, (2.3)
Remark 2.2

1. If accident periods are independent and if all exposures R} and le’mz are

B; .-measurable it is enough to assume

i)" B[STh 11 |Bik] = fi" R

Bi,k:| m17m2 Rm17m2 .

m2
i)’ COV{ zk-i-l’ ik+1
2. You can not take arbitrary values for """ and le’mz. The choice has to

be consistent with the corresponding covariance properties, i.e. the matrices

mi,mo m1 mo
(o "R T Jo<my ma<M
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have to be positive semidefinite almost surely for all i and all k.

3. For almost all results of this paper the assumption about the linearity of the

ml’ 2 4s measurable with respect to

exposures R 1’ % could be weakened to R
Dtk N Dy The only exception is the derivation of an estimate for the process

variance of the ultimate uncertainty, see Sections [{.1]

4. To get well defined objects we have to distinguish between the model parame-

ters fiI* and aml’mQ and the method defining exposure parameters ’y;nk’lh j and
mi,ma,l
Wzkh,] Of
M I (i+k—h)A M I (i+k—h)Ak
mlﬂﬂz _. ma,ma,l ol
=D me% and  RU™ =) % iy Sha
1=0 h=0  j=0 1=0 h=0 ;=0
(2.4)
respectively.

5. Often the choice of the exposures, i.e. of the parameters %mk’lhj and vﬁlﬂz’l mn

24, is of great importance. Unfortunately, we neither can provide a statistical
nor a general heuristic concept for this choice. In some cases, see for instance
Ezample[61), there is portfolio based information that may help with the choice
of exposures. An other useful technique is backtesting that means to look for
exposures for which we see now that the corresponding projections would have
been reliable in the past. For instance, if we have been using the same LSRM
for several years and always got good results, there is no reason to change the

exrposure.

6. If you are only interested in estimators for the expected ultimate outcome you

will not need assumption (23)).
7. External given exposures may be included in a similar way as described for the
Complementary-Loss-Ratio-Method, see Section [Z.2.

The following lemma contains some useful implications of Assumption 211

Lemma 2.3 Assume ST satisfy Assumption[21. Then
0) B[S0 [ D] = B[SH | Dy] = iR
b) Cov[STi, 1, Sy [ D] = Cov[sTiy . 57| De] = o e R,

mi mo
C) Cov [Sn-i-l —J1,J1° Sn+1 —Jj2,J2

D"| =0, for ji # jz.
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d) provided that all exposures R depend only on the i-th accident period, all
accident periods will be uncorrelated under the knowledge of some past, i.e.

for all o-algebras D}, all i1 # is and arbitrary ki, ka, m1 and mo we have

Cov [S

(2

1k15

i2,k2

D,’;] — 0. (2.5)

Proof: Since D" and Dy, are subsets of D} and R} and le’mQ are D" N D,-
measurable parts a) and b) are direct consequences of Assumption 211

For part ¢) assume that j; > jo. Then S

nt1—ja.ja 18 D, _y-measurable and we get

m2
Cov [Snﬂ 17 nt 1= o

D"] - Cov[ [s

n+1—ji,j1

n
Djl—l} Sni1- —J2,j2

D"] — 0,

Jji—1 J1 1

where we used that E [Sm-l it

m }ED NDj—1 CD" C
In order to prove part d) take i; # i9 and arbitrary k, k1, ko, m1, ms and n. If S21 T
or S i, k is measurable with respect to Dj} we are done. Otherwise, D} is a subset
of D“+k1 L and D”H€2 L and S ’r, 1s measurable with respect to the past of Soa

or vice versa. Without loss of generality assume that S} is Dﬁtﬁz l—measurable.

i1,k1
Then we get
m D io+ko—1 n
Cov[s,. Si,[Pr] = Blcov[si,. s, pith ] o]
io+ko—1 io+ko—1 n
+Cov B[S, [Pt B[S, [Pt o]

= 0—|—COV|: Zlklafk;z 1 zzkz 1‘Dk:|

Since Rkaz | € Bi, k-1 it is enough to show that SZ“kl and 52 p_1 are Dp-
conditional uncorrelated. Iterating this procedure we will finally reach a point

where Sl."f or
7

- i %a—j 18 Dij-measurable, which proves (2.5]). O

m17m2

Remark 2.4 Under the assumption that all exposures RZ 5w and R are B; -
measurable Lemma implies that the correlation of different acczdent periods
is determined by their first development period, i.e. there exist linear mappings

Cig: RM 5 R such that

Cov[(S™

)7 (S8, ) M = Cov[Cy i (S50 S, Oy (8510

227

provided i1 # is.

In the following sections we will discus for some well known reserving models if and

how they fit into the framework of LSRMs.
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2.1 Chain-Ladder-Method

For the Chain-Ladder-Method as analysed in Mack [6] one looks at one cumulative

claim property
k
Cij 1= Z S
j=0

The assumptions for the Chain-Ladder-Method are

\CL

i)"" E[Cik+1|Bix]= g1Ci -

.\ C

ii) L Var[C; g 11|Bi k] = 03Ci k.
iii)CL Accident periods are independent.

Since, C}; j; are elements of Li,:' k¥ and since
E[SYs1|Bik] = (9r — DCix  and  Var[SYy,,|Bix] = oiCix

we see that the Chain-Ladder-Method is a LSRM .

2.2 Complementary-Loss-Ratio-Method

For the Complementary-Loss-Ratio-Method one looks at a claim property Sg j and
an external given exposure P; that does not develop over time. The assumptions

for this method are
it E[S?,kﬂ‘lgi,k} = grb;.
ii)LR Var [Sng‘Bi,k] = UI%PZ'.
iii)LR Accident periods are independent.

If we take

S,-{k _ P;, for k=0,
0, otherwise,

we see that the Complementary-Loss-Ratio-Method is a LSRM.

Note, usually one assumes a bit less and takes unconditional expectations. The

main differences between taking conditional and unconditional expectations are:

e By taking the unconditional expectation you pretend to be only interested in
the overall expectation of the projected claim property, where the average is

taken over all triangles, although the projected claim property may depend



on the already observed triangle. In other words, the method does not use all

available information and therefore may not be optimal.

e By taking conditional expectations you explicitly assume that the projected

claim property does not depend on the already observed triangle.

2.3 Bornhuetter-Ferguson-Method

Here we look at one claim property S 0 - Usually the Bornhuetter-Ferguson-Method

is written as

J
Z S?Jg = qr1-:U"", (2.6)
k=I+1—i

where U? " s a priori known estimate of the ultimate outcome, which may be
motivated by pricing arguments or by external experts. Now we have to estimate
the loss ratios ¢. Often the Chain-Ladder factors are used. But we can do better,

see Mack [§]. We will use this idea and rewrite (2.6]) as follows

Z k— Z Gk— 1Upl

k=I+1—i k=I+1—i

If we now look at the unknown factors g; column by column we get
Spki1 = gU.

Finally, taking conditional expectations and U’ " as external exposure we see that
the Bornhuetter-Ferguson-Method can be looked at as Complementary-Loss-Ratio-

Method and therefore as a LSRM .

2.4 Extended-Complementary-Loss-Ratio-Method

For this method we look at incremental payments S . and changes of the reported

amounts Sil i simultaneously. The coupling exposures are the case reserves

Mw

0 0,0 _ 01 _ _
R}y =R}, = R = Ry = Rz e = =

Using this we get the following LSRM

j)ELE E[ ml‘zsgk] Fr (L = 89) for m € {0,1}.

:\EFLR mi ma
ii) Cov [Sz k10 ikt 1

Bhk} =g, " Z] O(Sl — SO ;) for mi,my € {0,1}.
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iii) “L® Accident periods are independent.

Note, this method projects payments and reported amounts in a way that both

projections lead to the same ultimate. For details see Dahms [3].

2.5 Munich-Chain-Ladder-Method

This method, see Quarg-Mack [12], considers the Chain-Ladder-projections of cu-
mulative payments Cj;j = Z?:o ng and reported amounts I; ;, := Z?:o Sil’ ; to-
gether in order to reduce the systematic gap between the stand alone Chain-Ladder-
projections, see Braun [I]. But the gap is not closed entirely.

As shown in Merz-Wiithrich [9] the Munich-Chain-Ladder-Method assumes
DNMOL B[C; ji1]Ch] = fxCix and ElL k+1|Zk] = g9idik,
ii)M CL Accident periods are independent.

Here C,, and Z; contain all information of payments and reported amounts up to

MeL you cannot extend these sigma

development period k, respectively. Note, in i)
algebras to Dy, like we have done in Section 2.2 Moreover, instead of looking at
E[C;,7|Dr—i] and E[I; j|D;—;], which are the orthogonal projections of C; ; and I; ;,
respectively, on the linear space of all D;_;-measurable, square-integrable random
variables, the Munich-Chain-Ladder-Method considers the orthogonal projections
on a much smaller affine subspace, for details see Merz-Wiithrich [9].

These are the main reasons why the Munich-Chain-Ladder-Method does not fit into
the framework of LSRMs.

3 Estimators for future development

In this section we want to present estimators for the future development of claim
properties, motivate them and prove some properties. In order to shorten notations

we define 8 = 0.

Estimator 3.1 (of the model parameter f*) Let ST, satisfy Assumption 21l
Then for each set of D'T* N Dy-measurable weights wiy, > 0 with
e R =0 implies wi, =0 and

b Zi[:_ol_k wyy, =1 if at least one R # 0

9



we get that

I-1-k Srr]),€ .
—~ Tt
= >0 wlh, oo (3.1)
is a Dy-conditionally unbiased estimator of the model parameter f".
Moreover, for every tuple fk"zl, ceey A,?:T with k1 < ko < -+ < k, we get

E[f;fl"'fﬁfr

D= s fr = B[

pkl} . E[ﬁn:r

Di|. (32
which implies that the estimators are pairwise Dy, -conditionally uncorrelated.

Proof: Let us start with the derivation of (B.):

I-1-k E[E[ m ‘ka”Dk} I-1—k m pm
-~ K417k kYK
B[ D] = Y win — = 0wt =
i=0 i,k i=0 i,k
Moreover, for every tuple J/”Zrl"l, ey /Z':’ with k1 < kg < -+ < k. we compute

Pma Py
B[ 7y

o) = el

Dkl}

_ E[fkn;l . f“fkj:IE[ﬁgjr Dkr} Dkl}
2 o .
_ E[f;zl...fkﬂl Dkl]fﬁ’j
—
which proves ([B.2)). O
Remark 3.2 Assumption [21l.1i) implies that the weights
o (F) (195 (R
wi,k) = Rm7m Rm,m 5 (33)
ik he0 h.k

result in estimators fkm with minimal (Dy-conditional) variance of all estimators of
the form BJ). In other words the resulting estimators fkm are (homogeneous) credi-
bility estimators. Moreover, in case of the Chain-Ladder-Method, the Complementary-
Loss-Ratio-Method and the Extended-Complementary-Loss-Ratio-Method those vari-
ance minimal estimators are the well known standard estimators, see for example

Mack [6] and [7] and Dahms [3].
In order to shorten notations for further calculations we will use the linear mappings
7 L — R, meLfF— R and  FU: L — Ly

10



defined by the exposure parameter yznk’lh ;o see (2.4),

I (+k—=h)A
m,l
Mo = 33 3 Whrhs (3.4)
1=0 h=0 =0
Fir = fi'T, (3.5)

" m ", fori+k<nork=0,
(F x)l,k = ’ ) (3-6)
Fh_jx, fori+k=n+1.

2y

Remark 3.3

o The mapping F™ fills the n+ 1-th diagonal of all claim property triangles based

on all diagonals up to the n-th business period.

e Even if the operators F., F!" Tk and F** depends only on coordinates within
Ltk N L, we have to enlarge their domain to L’OJrk in order to be able to

concatenate the operators F".
o Flix= (F"*ha)l) .

The concatenation of linear mappings F" is denoted by

Fn2<—n1 — HL%2+17 for n2 < ",
Fnan2—1...F"17 for ny > nyq,
F:nknx = (FHM_%) ik 0

where H]L% denotes the projection on the first n diagonals and the first column.

Moreover, we will use the symbol S™ for the vector

n.__ m \0<m<M
S ( i k)i+k§nor k=0"

As a consequence we get

E[ ™ e[ DR A ,Dk} ) [Sﬁcmﬂ ‘DHI@] — Fithgith (3.8)
E [S"l +na+1 |fDn1] — Frmitn2enigm

This together with Estimator Bl lead to estimators for the future development of

all claim properties.
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Estimator 3.4 (of the future development) Let SI} satisfy Assumption [21l
Then

~

S =FrIst,  I-i<k<J (3.9)

are unbiased estimators ofE[SZ}CH‘DI}, where f‘;nk" is defined in the same way as

F", see B0) and B1), but with fk’” instead of fi".

Proof: Because of Remark [3.3] and since each mapping ﬁfﬁ depends linearly on
ﬁm, we can rewrite the estimators as follows

= 71 I 9 7
FZLk S’ = Z f ..... fmT ZZ‘T 7k,,« , (310)
0<k1 <---<kr<k

where X,Z’l_’_'_”,;:nr are elements of I/ N 1Ly, and therefore measurable with respect to
DI NDy,. Now the stated unbiasedness follows from (3.8) and the properties of fk’”,
stated in Estimator 3.1 O

Remark 3.5 If the development of claim properties does not depend on future ac-
cident periods, that means if all exposure parameters ’y kh] = 0, for h > i, the
summation in BIQ) starts at I —i, which means the stated estimators S ;. are even

Dir_;-conditionally unbiased estimators ofE[ . RH‘DI}.

In the same way we get unbiased estimators RY% and R} of the exposures R/,

and R}V by

M I (i+k—h)A I (i+k—h)Ak
m . al M1,m2, my,ma,l Gl
=)D Z mh,ﬁm and R ZZ > s S
1=0 h=0 =0 h=0 7=0

(3.11)

. . l l
respectively, with exposure parameters V.m;f’ hj and vﬂl}:@?’ , see (2.4]).

Note, we only need estimates of the exposures R 1’ % in order to derive the esti-
mates for the process variance of the ultimate uncertainty, see Section .11

In order to shorten notations we will use the definitions
am . am pm . pm pmi,me . pmi,msa
Si,k =05 ks Ri,k =y and Rz,k = Rz,k )

for k<I—iork=0.
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4 Mean squared error of prediction

In the previous section we presented estimators for the ultimate outcome of claim
properties. Now let us look at the (conditional) mean squared error of prediction
for the estimated future development. Often we are in a situation where we are
not only interested in a single claim property but in a linear combination of several
claim properties, see for instance the examples presented in Section [6l Therefore,
take DI-measurable weights ", 0 <¢ < T and 0 <m < M.

We will start with a fixed accident period ¢ > I — J. The corresponding mean

squared error of prediction is defined by

M J-1 N M J-1 - 2
mse[Z >, O‘TSZ}L@—H] =E (Z > ap (S;j",bm—s;j}fﬂ)) DI, (4.1)

m=0k=I—1 m=0k=I—1

A short calculation yields

Mo J-1
mse E E ;" S k1

m=0k=I—1i
M J-1 M J-1 2
= Var| Y3 arsm DY+ ( oz;”E[ o — A{j};H‘DID.
m=0k=I—1 m=0k=I—1
process variance squared parameter estimation error

For estimators of second moments we have to estimate the model parameters a]:”l’mz.

If the normalizing constant Z;"™* > 0 one can take the following Dj-unbiased
estimators
— m} _ z—zlfk w%;w;’jg (SZELH B /Zm) (SZELH B Akm2> (4.2)
Zp " = Ry Ry Ry
with

R S wpe:
mi,mz | __ 2, 2, _ mi1 ma2 mi,m2 ) )

Zy, = E : mrpm | L~ Wip — Wi + Ry E : Rme |
i—o ikl h=0 ~ hk

For Z,Tl’mz = 0 and in particular for I = J one could take the following extrapola-

tions, see Mack [6] for the first part,

~M,mM\2
~mm . (UJ—2) ~m,m ~m,m 4.3
Oyj-1 = M —=mm—0y-3,%5-2 |> (4.3)
J-3
G ma me,my %
~mi,m2 ,__  ~M1,m2 J—1 J—1
05-1 = 0g2 <Am17m1/\m2,m2>
Oj—2 0j—2

13



Remark 4.1 The estimation of the model parameters O']an’mQ is a wide field and
you may often find better estimators than presented here. For instance, you may
introduce weighted estimators and use other extrapolations. But since such cus-
tomising usually depends heavily on the analysed data we will not go into details

here.

4.1 Process variance for an accident period

In order to get estimators for the process variance let us start with some computa-

tions of the expectation of products of S7..

Lemma 4.2 Assume S, satisfy Assumption [Z1. Then for all I +1<n <1+ J

and arbitrary D" '-measurable real numbers 91 J and gzmh . we get

M I (n—hi)AJ (n—h2)AJ
n—1
Cov| D D> D 9w h1]1’z Z D IS |P
m1=0h1=0 71=0 ma=0 ho=0 j2=0
M
_ § m17m2 mi,ma
- Z gln JJg2n —4,d %j— R, —7,j—1" (4.4)

m1,ma2=0 j=n—I
. : n—1 m m : m
Proof: Take arbitrary D"~ “-measurable real numbers 9ih and 9o h i Since Sh7 f

is D"~ !-measurable for all h 4 j < n — 1 we get

I (n—hi)AJ I (n—h2)AJ
n—1
Cov Z 2 > TS Z > D BhiShn|P
m1=0h1=0 51=0 mo=0ha=0 j2=0

D]

— mi m2
- Z Z gln —J1,J1 g2n Jzyzcov[sn - J1’Sn —J2:J2

mi,mo= 031,]2 n—I
M

_ m17m2 mi,m2
- Z Z gln J,Jg2n 3.3 95— Rn —JJ—1

m1,m2=0 j=n—1I

where we used the covariance assumption on a LSRM and part ¢) of Lemma 23] for
the last step. O

Now fix i1, 79, k1 and ko with I < iy + k1 < iy + ko. Then we get

I _ io+ko 1
Cov [Sll k1+1° 22 kz—i—l‘p ] = Cov Sll ki+1° [ 12 k‘2+l‘D ] D ]
_ m27l2+k2 io+ko I
= Cov Sn k1+1’ i2,k2 S D
; m1 ma,i1+k1+1gip+k1+1 1
= Cov 5217k1+1,Fi27k2 S D

=B [COV [Si Y B Tt igitha ‘Diwkl}
|.

i

m1,21+k1 i1+k1 me,iit+k Qi1 +k1
+Cov|[Fyr gk pra it

14



An iteration of the last step leads to

i1+k1+1

m2 I\ __ m1,n n Frengn|pn- 1 I

Cov |ST 41 Z.WH‘D}_ > E[Cov|[FryrsT FryS D ”D].
n=I+1

Applying the covariance formula (£.4]) we can proceed with

i1,k1+1° Zg,kg—l—l
i1+k1+1

A l2
-y Z Z ol E[ ffl;,j—l‘pl] (FT’;) n—j.j <F$2kg) n—jij-

n=I+1 11,lo=0j=n—1

Cov [S.ml ‘DI}

Using the same techniques we get similar formulas for all remaining indices i1, iz, k1
and ko with i1 + k1, io + ko > I. Finally, we replace all unknown model parameters

by their estimators:

Estimator 4.3 (of the process variance of a single accident period)
Assume ST 'k satisfy Assumption 21l and take arbitrary D! -measurable factors o

0 <m < M. Then the process variance of a single accident period can be estimated

by
M J-1 M i+ (kiAk2)+ J—1
Var g g ;" Si k41 D! E aa)"? g g E g
m=0 k=I—1 mi,ma=0 k1,ko=I1—i l1,lo0=0 n=I+1 j=n—1-1

~ ~ I ~ l2
A1l Bl < ml,n) ( m27n)
o R: . |F. F. .
J n—1 J5J kal n_l_j,j+1 Z7k2 n—l—j,j-l—l

Remark 4.4 (The case of non linear exposures R],""")

If we weaken the assumption on covariances to non-linear exposures
RV = T2 (87F) € D N Dy,
we will still use the estimate
B[RS |1 = B[t (v DT | ATt 80 = R

which is only a very rough estimate.

4.2 Parameter estimation error for an accident period

In order to get an estimator for the parameter estimation error we will apply the

conditional resampling approach, see Wiithrich-Merz [10, Section 3.2.3]. Therefore,
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we will look at

0<I<M M .
A <<ﬁ>0<k<J—1> = (Z “

as a function of the estimated model parameters ﬂm The conditional resampling
approach means to estimate A; by its expected value under the resampling proba-

bility measure P*, which is the product measure of
P’ ((ﬁm)OSmSM € A) = P((ﬁm)OSmSM e AP N Dk).

We denote the expectation, variance and covariance with respect to P* by E*, Var*

and Cov", respectively.

Remark 4.5 From the definition of the conditional resampling measure it follows

that:

1. Under P* every collection {J/”Z"l, e /Z'Z"} with k1 < -+ < ky, is a collection
of independent variables.
2. Forall0<m<Mand all0<k<J-1 wehaveE*[Akm]:fg”.

3. For all 0 <mqi,mo <M and all0 < k < J — 1 we have

I—-1-k m1,ms2

~ ~ k
0" 1= Cov | fire] = o D il g (0

Using Remark (5] we get

A;

2
=
v
o
=

M J-1 2
E* [Z af" ;j",;HD. (4.7)
k

m=0 =]—1
In order to get an estimator for the first addend on the right hand side let us start

with some computations of expectations of products of §Z”’,’C under P*:

* . i
B |:Sll k1+1512 k2+1] E |2521 k1+1Fm1 Slz-i- 2}

i9,ko
for all i9 + ko > I. If ko > ki the variables §Z” ,1k1 41 and Si2+k2 do not depend on

]Z;"Q and we can use Remark in order to obtain

* * k
B S S| = B[S P, S (48)

16



Analogously we compute for 0 < k< J —1and i1,i0 > 1 —k
E* S“ k+1512 k+1} ( Iznl Iznz + szhmz) E* Fg}k§i1+krgfk§i2+k] ) (4.9)

Now we want to take the linear operators I out of the expectation. Therefore,

we define the following linear operators:

Hy,(7): Ly ® Ly, = Lig1 ® L

by
mi,m2
<Hk(7') azy) (4.10)
i1,k1,92,k2
F:lh];f!(n-i—k) ngzk,i!(zz-i-k) 7 for iy Ay < T —k—1or ki Aky < .
(e + 7 T e TRy, otherwise,

where 7is a M x M x I x I x (J — 1) matrix of real numbers.

Remark 4.6

e Strictly taken, we had to write H]LI\/(i1+k)fl7 and HLI\/(i2+k)y instead of x and y
0 0

in the first line of the definition of Hy (), respectively.

IV (i1 +k IV (i1+k
° F;’f}kl_(l“ ) — Fm}ﬂ, forii+ky >1 and ky =k+1, and F:nlkl (k) a:Z”kl

in all other cases of the first line of the definition of Hy (7).

Concatenations of those operators will be denoted by

sz (T)sz—l(T) T H/ﬂ (T)7 for kg > ki,

HF2 M (1) =
Uy, 11®Lyyts otherwise,
mi,mo
mi,ma o k1Vka)<«+0 ’
H’Ll ]{,‘1 7,2 k)g( )':L' T (H( ! 2) (T)':U> . . ) (411)
T i1,k1+1,32,k2+1

where I, @ 1,,,, denotes the projection onto Ly,+1 @ Lig,41-

Corollary 4.7 At point T = 0 we have

mi,m2 _ mi,l ma,I
i1,k1,92,k2 (T) 1Y = Fil,k1 xFig,kz Y.
; . . mi,ma o .
Moreover, a linearisation of H; "2 o (7) at T =0 yields
mi,m2 my,l ma,l
Hi17k17i27k2( Ty — le k1$F22 koY (4.12)
k1Nka

Q

<Fm1,h1+j+1)ll (sz,h2+j+l)l2

E § : § : i1,k1 . i2,k2 .

’ h 1 ’ h 1
J=I (i Ai) Liol2=0 by ha=I—j S 2%

Al I hi+j—1<1 12 hotj—1<1
hha g U g F 2l i F y-

17



Proof: The first statement of Corollary [4.7] is a direct consequence of the defini-

. mi,ma l1,l2 . . i1 .
tion of Hil,kl,iz,kg (7). Moreover, Thyhaj 18 only contained within the (I1,l2,h1,Jj +

1,h9,j + 1) coordinate of H;"™"™? . (7). This proves (£I12]). ]

i1,k1,02,k2

Iterating (A.8) and (£9]) we get for I < iy + kq, ig + ko

* |am1 ama _ my,ma2 Qlgl
E [Sil,k1+15i2,k2+1} = Hil,kl,ig,kg(g )S'S (4.13)
with
g/gl . (57@1, mo >0§m1m12§M
ILTIRI2 )y i inja<T
and

O = g (111

Combining (£11]) with Corollary .7 and replacing all unknown parameters by their

estimates we get

Estimator 4.8 (of the single period parameter estimation error)
Assume Sﬁ satisfy Assumption [21] and take arbitrary D! -measurable factors o),
0 <m < M. Then the parameter estimation error for accident period i can be

estimated by

M J—1
N L mi _mso FYM1,mo [~k Tmq,mo Tal
A= ) oM™ Y <Hi,k1,i,k2(g )_Hi,kl,i,k2(0)> S'S%.
m1,m2=0 k1,ko=I—1i

where the operator IA{(’Q\*) is defined in the same way as the operator H(Q"), see

@I0) and @IT), but with f* instead of fi™.

Moreover, a linear approximation for the operator ﬁ(T) at T =0 leads to

M J—1 k1Nko M I
N mi . ma2 ~xl1,la pl1 Dla
Ai o~ ) oMo > > 0; Ry, By,
m1,ma=0 ki ka=I—i j=I—i l1,la=0 h1,ha=I—j
. (f\mhhl-i-j-i-l)ll (ﬁmz,hz-i-j-i-l) l2
b1 hig+1\ bR ha,j+1

4.3 Single period mean squared error of prediction

Combining the results of the previous two sections we obtain

Estimator 4.9 (of the mse of prediction for a single accident period)

Assume ST}, satisfy Assumption 21 and take arbitrary D! -measurable factors o,

18



0 <m < M. Then the mean squared error of prediction for the projected claim

properties of accident period i can be estimated by

k=I—1i

M J—1
._ mi_ma FYM1,M2 o~k Fpma,me Iql
=) aa ) (Hz‘,km,m(g) Hi,k17i7k2(0)>s S
m1,m2=0 k1,ko=I1—1
M it(kiAk2)+1 J—1
n Z Z Z Al17l2Rl1,l2 ( Fron )ll (f\m2,n)l2
AN N R ALV S Y Ae

l1,l2=0 n=I4+1 j=n—-1-1

Moreover, a linear approximation for the operator ﬁ(T) at 7 =0 leads to

M J—1 M
mselz Z 5m+1] ~ Z ;" o™ Z Z

k=I1—1 ml,m2=0 kl,kQZI—i l1,l2:0
Z+(k1/\k2 —I—l I I
E ' E ' 1,12 Rll’l2 ml,n 1 f\m%n 2
o5 g \Fiks n—1—jj+1\ k2 ) g i
n=I+1 j=n—-1-1I ’ ’
A Il h h h b2
el Slo (Fmihi+j+l Smg ho+j+1
* Z Z % 1 2Rh1 JRh22J (F;n’fll Y >h1 j+1<F?7’“22 Y )hg G|
j=I—i hyi,hao=I1—j ’ ’

Remark 4.10 For the Chain-Ladder-Method the stated estimator is the same as
in Buchwalder et al. [2, Approach 3] and the linear approximation is the same as
in Mack [6].

Moreover, for the Extended-Complementary-Loss-Ratio-Method the linear approxi-

mation is the same as in Dahms [J].

4.4 Overall mean squared error of prediction

Since the estimators §ZL 71,61 and §ZL 72,€2 depend on the observed data of all accident
periods they are usually not uncorrelated. Therefore, the overall mean squared
error of prediction is not equal to the sum of all single period mean squared errors
of prediction. As in Section ] we can decompose the overall mean squared error of

prediction as follows

2
'E [Sz’fhl - §%+1‘DID .

process variance squared parameter estimation error
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Using the same arguments like in Sections [41] and we get

Estimator 4.11 (of the overall mean squared error of prediction)

Assume SZ}C satisfy Assumption [21] and take arbitrary D! -measurable factors al,
0 <m < M. Then the overall mean squared error of prediction for the projected
claim properties can be estimated by

I M J—1
msegga:” m

i=0 m=0 k=I—1i

J—1
ameme %\ Tymi,me Iql
Z Z ai Z Z [( Z17k1,12,k2(9) Hi1,k17i27k2(0))s S
i1,12=0 m1,m2=0 k1 I—iy ko=I—is

M (i1+k1)A(i2+k2)+1 J—1

15 —~ lo
All lo Bli,l2 m1 ma,n
+ Z Z Z ’ R : ( : > (F : ) :
n—1— .77.] Zlykl 'I’l—l—j,]—i—l Z27k2 TL—l—j,j-‘rl

l1,l2=0 n=I+1 j=n—1-— I

M

Moreover, a linear approximation for the operator ﬁ(T) at T =0 leads to

I M J—1 I M J—1 J—1 M
— m am ~ mi __mo
I DIDIED DR 181 I DEED DR D DD DI

i=0 m=0 k=I—i i1,i2=0 m1,m2=0 ki1=1—i1 ko=I1—i2 l1,l2=0

(i14+k1)A(i2+k2)+1  J—1
§ : § : All’l2Rl1’l2 le,n h f\mmn 2
n=I+1 j=n—1-I ’ ’

k1Aka I N

n Z Z A*zl,zg Rh Rh ( :n1k,h1+]+1> <F;m];h2+y+1) .

1.7 27] 1,R1 hl,]-‘rl 2,R2 h2,]+1
j=I—(i1Ai2) h1,ho=I—j

Remark 4.12 For the Chain-Ladder-Method the stated estimator is the same as
in Buchwalder et al. [2, Approach 3] and the linear approximation is the same as
in Mack [6].

Moreover, for the Extended-Complementary-Loss-Ratio-Method the linear approxi-

mation is the same as in Dahms [3].

5 Solvency reserving risk

In this section we want to look at what we can say at the end of business period [
about the development result related to the estimates Sm T+ at the end of the next
business period, assuming that we will take the same LSRM . For the projection
of payments this means we want to analyse the profit or loss of the next business

period related to the estimated reserves.
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In order to distinguish between the objects of the previous sections, which belong
to estimation period I, and the objects of the next estimation period I + 1, we will
introduce, if necessary, an additional upper index that indicates the time which the
object belongs to.

Taking the same LSRM means:

Assumption 5.1 There exist D' N Dj-measurable factors 0 < w?jﬁl <1 with

m _ . . m,[+1
° Rl_kk = 0 implies Wi’y = 0

o w?’};”lz(l w}nﬁ;)w 3 for0<i<I-1-k.
Remark 5.2 The above assumption means that we do not change our (relative)
believes into the old development periods and only put some credibility w}’i’ﬁ?j to

the new encountered development.

The variance minimizing weights, introduced in Remark[3.2, satisfy Assumption[5 ]l

The estimates of the model parameters for the next period are given by

frlt Zwm”le“, for 1 <k<J-—1 (5.1)
zk

Note, the estimates f,?"b T+ for the model parameters f;" may depend on S7, .

and are therefore usually not D’-measurable. Their at time I expected values are
2 I N I I
it s= B[R] = (= W R w 6:2)

Therefore, the estimate of the at time I expected value of the model parameter

A~

Sl
fr =1 (5.3)
Using (5.2) we compute for the D!-conditional expected value of the next years

projected claim properties
g JH1| NI T I
P = B[S P = B (5.4)

where an is defined in the same way as FZ ", see ([B.7), but with fJ* instead of

fi*. For the exposures we get

M I (i+k—h)Ak
pm . mI+1 I m Qi+k _ m,l &l
ik = [ ‘D} IHS*=3%">" ik, b (5.5)
=0 h=0 7=0
M I (itk—h)Ak
pmLme pmi,me,I+1{~T| _ ml,mz Qi+k _ mi,ma,l gl
=0 h=0 7=0

21



with exposure parameter 72 X h ;and v; kl ’,7;2’ see (24).

In order to shorten notations we define

FV" .=F" and S™'=8".=g"
I+l mm I+l B I+1
for n < I, and analogously for the exposures Rm A R, A RIb™ 1 and
ml,m2,1+1
Rzk

The at time I + 1 observed (claims) development result (CDR) of a linear combi-

nation of claim properties for a single accident period i is given by

CDR!*! := Z Z (St =5t (5.6)

k=I—i

where o7 are arbitrary D!-measurable real numbers. Since the estimates 32”;21
and §Z}C’I+l are unbiased, the expected development result will be zero. Moreover,
because of (5.3) and (5.4), the at time I estimated D’-conditional expected value
of the CDR is zero, too.

Now, we want to look at the uncertainty of the observed development result in terms
of the D!-conditional mean squared error of prediction.

As for the ultimate mean squared error of prediction, see Section [ we can split the
mse of the observed development result for a single accident period 7 into a process

variance term and a parameter estimation error term:

2
mse[CDRiIH} =E (Z Z ( Z"}Cf{l— ﬁL) —0> D!

m=0 k=I—i
<E

5.1 Process variance of a single period CDR

J-1

mI+1
§ : i,k+1
=I—

7

M J-1
m om,I+1 am,I
§ :O‘i <Si,k+1 - Sz‘,k+1)
m=0 k=I1—1

2
D+ ny )

M
v ) ol
m=0

k

We will split the process variance term of the CDR as follows

Z Z S|P

k=I—i

<ol (Ser 8 s ) ol (e[ B s

m=0 k=I—i

Var

] (5.7)

)2.

In order to get estimators for the first addend on the right hand side let us start with

mI+1

some computations of D!-conditional expectations of products of S . Therefore,
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take k1 < ko and ko 4+ 75 > I. Then we get
am ,I+1 mo, [+1 | ~T o m ,I+1 ama, I+1 I
57,1 1]61-{-1 i2 2]62-{-1 ‘D ] _ |: |:S7,1 1]61-{-1 12 2/4:2-{-1 ‘Dk2:| D :|

= B[Syl S Dl

i1,k1+1

In case of k1 = k9 =: k we compute

E [S'\ml ,1+1§m2,1+1 "Dl}

19,ko

i1,k+1 “ig,k+1
Fmy g —m1,ma m1,1+1 m2,1+1 7] ..
E(k zlzzk) i1,k zz,k D, f0r11722>1_k7
my fmg 4 5m,me m1,1+1 m2,1+1 I . s
B E(k + 05 i Ry R, DY, foria>dy=1—k,
N + g2 m1,1+1 m2,1+1 I . .
E( + 05 i Ry Ry DY, forin >dp=1—k,
my + grume M1,I+l m2,1+1 I S
kE(fk nzzk) b 227k DY, forig=io=1—k,
with
[ Pma,I+1 pma,I+1 .
Cov f,inl’+,f,zn2’+ DI, foriy,ipx > 1T —k,
S
i, k+1 . .
Cov “7,7; ;nz’Hl DI, forig>iy=1-k,
—mi,ma ,_ ik
Ginizk 141 Sigkt1
ml, + Teg,k+1 I . .
Cov | f s~z | Py |, forip >is =1—Fk,
12,k
Sm mo
K+1 K1 ) )
Cov §+,;m: DI, fori; =40 =1—k.
i1,k i9,k

A short calculation yields

Rmhmz
m1,l4+1  mo,I+1 _mi,mo I—k,k ..
Wy G Wik O W for iy,i > I — Kk,
I—k,k""1—k,k
Rmhmz
I—k,k . .
w;’w,’f;lazh’mz— for is > i1 =1 —k,
grme Ry R
i1,02,k RMm2
I+1 1—k,k . .
w;n_liﬂ]:_ 0?17mzﬁ for iy > 40 =1 —k,
—k,k" "I —k,k
le,mg
I— kk . .
O_an,ng , fori; =i =1 — k.
I— kk I kk

Finally we use the same arguments like in Section and replace all unknown

parameters by their estimators at time /. This leads to:

Estimator 5.3 (of the process variance of CDRZ-IH)

Assume S} i satisfy Assumptions 21 and[51] and take arbitrary D! -measurable fac-

tors aj"
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a single accident period can be estimated by

Za Zs:’zitl ]
J—1

k=I—1
- mi, mso ymi,me (2 Ey7sme Igl
SN e Y (ARG -RL0)SS

m1,mo=0 k1,ko=I—1

Var

Moreover, a linear approximation for the operator ﬁ(T) at 7 =0 leads to

mI+1
E:O‘ E: Szk-i—l ]
k=I1—1i
k1Nko o
~ mi1 __ma —172 ll AlQ
~ Z a; oy Z Z > Z Ohi ha i B2hy i, 4

m1,m2=0 k1,ko=I—1i l1,l2=0 j=I—1i hy,ho=I1—j

(ramti+i) Fma.ha+it]
1,k1 i,ko . .
h1,j+1 ha,j+1

Var

5.2 Parameter estimation error of a single period CDR

As for the ultimate parameter estimation error in Section we use the resampling

method and estimate

M J—1
mi . Mmo ama, ma,
E : Q; T Q; Z ( zkl-‘,—l Sz kﬁ—l)( zkg—i—l Szkg—i—l)
m1,m2=0 k1,ko=I—1

by its expectation under the resampling measure P*. Hence, we have to analyse

terms of the form

* * , * g * g ,
E 521 k1+1522 k2+1i| E |:S7,1 k1+ISZ7;l2l€2+li| E |}S‘Zl1kl+lslz k2+1i|+E |}SVZL1161+ISZZL2]€2+1]
(5.8)
We already know the last addend from Section

*|[gmi, I gme, ] | _ gymima nqlgl
E [Sil,kl-l-lSinQ-i-l} B Hil,k17i27k2(g )S’S".

The other three addends of the right hand side of (5.8 will by analyse in the same
way. Using the properties of the resampling measure P* stated in Remark we
obtain

* | @m1 mo _ * [pm1 Qi1+k gme
E |:S7,1 kl—l—lslz k2+1:| = E |:F‘Zl kls SZZ k2i|

* | gmi1 mo _ * mi 11+k I agma
E |:S7«17k1+1SZ2,k2+1:| = B |:Fll, 1S 5227 ]
* ama, _ * [pm1 Qi1+k gmae
E {521 k1+1512 kz-l—l} =k |:Fll,kls Sl27 }
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for k1 > ko and i1 + k1 > I. By symmetry we get analogue results for ko > k1 and
io + ko > 1.

In the case of k1 = ky =: k we have

B[S 5] = B[ A g 8 ]

i1,k+1%di9,k+1 11,12,k i1,k
*|gmi,d gma _ * |/ pmm1 Fmo *2m1,mo\1m1 Qi1+k,Ime Qis+k
E |:Si1,k+15i2,k+1} = E [(fk w0 ik TS LS }
* |ama ama,l _ * |/ Fm1 pmo *1M1,M2\ 1M1 Qi1+kpme Qio+k,T
E |:Si1,k+15i2,k+1} = E [(fk kot Qi jin k )Fil,ks Fiz,ks }
with
1 —wmeI ) grmume g L ks Tand iy +k > 1
prImLme I-kk ) Qiisk > 1 2 24,
11,02,k T .
0, otherwise,
1— w2 i) prmme g i+ k> Tandig+ k> 1T
*amima Wi gk ) Qiisk > 1 = 2 )
11,02,k o .
0, otherwise,
my,1+1 ma,[+1 *M1,M2 . .
camims (1 — Wk > <1 — Wik ) Oiink > for i1 + k,io + k > 1,
i17i27k - .
0, otherwise.

Summarizing all parts and replacing all unknown parameters by their estimators

yields

Estimator 5.4 (of the parameter estimation error of CDRZ-I 1y
Assume ST}, satisfy Assumptions[2.1 and (5.1l and take arbitrary D! -measurable fac-
tors o, 0 < m < M. Then the parameter estimation error of the claim develop-

ment result of a single accident period can be estimated by

R M J-1

AL mi__mo YM1,Mm2 (%) FYMI1,M2 (%

A= D e Y] <Hi,k1,i,kz(9) Hy k(@)
m1,m2=0 k1,ko=I—1

_ ﬁml,m2 (’Q\*z) +ﬁm1’m2 (@*12)) §I§I,

1,k1,4,k2 i,k1,1,k2

Moreover, a linear approximation for the operator ﬁ(T) at T =0 leads to
E1Aks I

M -1 M
A~ mi1 . ma ~xlilo ~klile  ~xolyyla | 120l
INEDICALED DD DD DD <@h1,h2,j Ohy,hag ~ Chihag T Chihoyj

m1,ma=0  ki,ko=I—i l1,la=0 j=I—i hy,ho=I—j

—~ . A ~ . lo ~ ~
. mi,hi1+j+1 ma,ha+j+1 l1 lo
Fi ks o \Figs By By
h1,j+1 ha,j+1

5.3 Mean squared error of a single period CDR

Combining the results of the previous two sections we obtain:
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Estimator 5.5 (of the mean squared error of CDR/™)
Assume S} § satisfy Assumptions[Z1 and 51 and take arbitrary D' -measurable fac-
tors o, 0 < m < M. Then the mean squared error of the claim development result

of a single accident period can be estimated by

M J-1
— I+1| . mi1 _ma ymi,me (2 ymi,me
me(ODRI | = 37 aftal Y7 (ELT (2) - ELTE (0)
m1,mo=0 k1,ko=I—1

+H] L (@7) — H T (@7)
H™m2 (5 my (s Ial
S (@) + L (2 STS

Moreover, a linear approximation for the operator ﬁ(T) at T =0 leads to

k1Nko
H/1§3|:CDRZ~I+1] 7 E a" o)™ E E E E
m1,m2=0 k1,ke=I—1i l1,la=0 j=I—1i hy,ho=1—}j

~l1,l2 ~k11,l2 ~k1 11,12 ~ko 11,12 ~k1911,l2
<Qh17h2,1 F Ohy hoi T Chisha ~ Chishag T Chaholj

.<§m1,h1+j+1>’ (fmz,hmﬂ)l A pl
ik hij+1\ Dk hojt1 udha.g

5.4 Mean squared error of the overall CDR

As for the single period CDR we split the mean squared error of the overall CDR

into a process variance and parameter estimation error term:

I I M J-1 R 2
| S cont] = (3 S 5 (anty - s) o) o

1=0 =0 m=0 k=

s

Since 3\;?1161”1 and :S’\ZQ,CZIH depend on the new observed diagonal they are usually

i

M J—1 2
mI+1 mI I
Za Z( i,k+1 zk-i-l) D :
=I—

I—
I
i=0m=0 k 7

not D!-conditionally uncorrelated. Therefore, the overall process error as well as
the parameter estimation error are not equal to the sum of all single period process
and parameter errors, respectively.

Analogue to Sections [5.1] and we can calculate the additional terms and get

Estimator 5.6 (of the mean squared error of the overall CDR)
Assume S} satisfy Assumptions 21 and[51 and take arbitrary D -measurable fac-

tors o', 0 < m < M. Then the mean squared error of the overall claim development
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result can be estimated by

1 1 M J—-1
mse| Y CDR/™| = > Y ol > § j (5.9)
i=0 i1,i2=0 m1,m2=0 k1=I—1i1 ko=1—12
Eyrmme = 7, me Ey,me ¥ Eyrm,me %]
(Hil,k17i27k2(g) o Hil,k17i27k2 (0) + Hil,k17i27k2(g )~ Hil,k17i27k2(g )

SHPLT @)+ H L (00))STS!

i1,k1,12,k2 i1,k iz, ko \ @

Moreover, a linear approzimation for the operator ﬁ(T) at 7 =0 leads to

1
DR-I+1
§ ,t i
i=0

mse

I M k1Nko
~d > Ay Z Z Z ) Z
i1,i2=0m1,m2=0 ki=I—i1 ko=1—i2 l1,l2=0 j=I—(i1Ai2) h1,he=I—j
~l1,l2 ~x 1,12 ~x1 11,12 ~ko 11,02 ~k12 11,12
(th,hzd + Ohiha,j — Chihayg — Chihaj +o Ohy ha,j

(Epyoe)) (B R R
Remark 5.7 For the Chain-Ladder- and the Ezxtended-Complementary-Loss- Ratio-
Method the linear approximation is the same as in Buchwalder et al. [2, Approach 3]
and Dahms-Merz-Wiithrich [4)], respectively.
If at time I we do not believe in the development of the next period, that means if
we take all w?ﬁ:g =0, the last four terms of (5.9) and its linearisation will vanish.

This means the mean squared error of the overall CDR is the sum of the process

variance terms

~Mm1,m9 pM1,ms
o; R hj
7

transferred to the ultimate by

ml,h—i-]—i-l]’:—}mz,h-‘,-]-l—l
i1,k1 i2,k2

Moreover, increasing the credibility w}n_’é’kl we give to the development of the next
period will increase the part of the ultimate uncertainty that belongs to the develop-
ment of the next period.

The technically Assumption [51 could be weakened to arbitrary D! N Dy-measurable
weights w:nkH which satisfy the normalizing assumption. But in general this will

lead to
E[ﬁmJ—i—l‘D[}#ﬁm,I—i-l,
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which means that at time I the estimated expected CDR. would not be zero. This
does not get along with most of the reserving standards. Moreover, we would have

to be a bit more careful with the resampling.

6 Two examples

In the following we will present two examples of LSRMs. The first one illustrates
the power of LSRMs if we want to analyse different kinds of reserves (or claims) by
using different methods for the estimation without losing the ability to estimate the
mean squared error of prediction of the overall ultimate outcome and of the overall
claims development result. The second example shows how different methods may
be mixed in order to estimate the reserves and the corresponding mean squared
errors of prediction of the ultimate outcome and of the claims development result.

A VBA example implementation can be obtained from the author.

6.1 Example 1

The first example is an accident portfolio where we have three types of liabilities:

e Medical expenses (ME) will be estimated using the Chain-Ladder-Method.
The motivation for the choice of this method (exposure) is mainly that it

worked fine in the past. Data are provided in Table Bl

e Payments for incapacitation for work (IW) are by law proportional
to the insured salary, which is limited to a maximum amount. Moreover,
during accident period 7 the maximum insured salary has been increased by
about 20%, valid for all claims happening afterwards. Therefore, we think
the Complementary-Loss-Ratio-Method with the insured salary as external
exposure is a good method to estimate the corresponding reserves. Data are

provided in Tables @ and [Bl

e Subrogation (Sub) possibilities are huge. The reason is that many claims
are caused by car accidents and that by law the accident insurer of the insured
persons has to pay first and may take subrogation against the motor liability
insurer afterwards. Therefore, we assume that the amount of possible subro-

gation is proportional to the total amount that already had been paid, i.e. to
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ME+IW+4Sub. Data are provided in Table

For the coupling of those three types of payments we choose the cumulative total
payments, i.e. RZL,;’m2 is the sum of all payments (including subrogation) for all
claims of accident period ¢ up to development period k.

For the estimation we used the standards weights of (B3] and the corresponding
unbiased estimators for the model parameters (8.1), (£2) and ([43]). Note, a few of
the estimated correlation matrices for development period 6 and 7 are slightly non-
positive defined. We believe that this is more an estimation problem than a model
problem and we could change the estimated 82”“”12 slightly in order to get always
non-negative defined correlation matrices and only change the resulting MSEP and
CDR by less than 0.5%. Therefore, we did not do that.

Table [1l shows the resulting estimates for the reserves, the MSEP and the CDR.
In the last column we added the corresponding results of an overall Chain-Ladder-
Method. Note, the difference between the shown figures and their linear approx-
imations are less than 0.03. We see that the total reserves of the LSRM are
much higher (11%) than the Chain-Ladder-Reserves. The main reason is that the
Complementary-Loss-Ratio-Method fits the special development of the payments
for IW better than the Chain-Ladder-Method. Moreover, the subrogation potential
has been increased by the higher expected total payments.

Taking the Complementary-Loss-Ratio- instead of the Chain-Ladder-Method for
the projection of IW is only important for the second development period. This
can be verified by backtesting, but we do not have a good explanation for this
behaviour. Since other parameters which have an impact on IW, like a change in
the general economic situation, are not reflected within the insured salary it may
be a further improvement to the model to choose the insured salary as exposure
for the second development period and switch to the Chain-Ladder-Method for all
other development periods.

The differences of the MSEP and the CDR between the LSRM and the Chain-
Ladder-Method are not so significant, which confirms that neither the MSEP nor the
CDR should be used to decide which method is the best. We strongly recommend
to look for good exposure measures R}, that can be motivated by other facts than

triangle based statistics.
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ME Iw Sub Total  Total CL
Reserves | 81'954 125809 -46'443 161'319 144’788
MSEP 37T 5991 4'975 8504 8633

CDR 2795 4723 3208 6°088 6'484

Table 1: Results of Example 1

6.2 Example 2

In this example we want to show how LSRMs may be used in order to combine
method based results with actuarial judgement. For instance, assume we have
projected payments and reported amounts (or incurred) separately with some LSRM
(the method based results). Now we look at those projections and decide about
a final ultimate, which is a linear combination of the two projections (actuarial
judgement). If we introduce in addition a coupling exposure Rg’kl we automatically
get a corresponding estimate of the overall uncertainty and the uncertainty of the
claims development result.

As example we take the data of Dahms [3| Example 1]. The triangles are shown in

Tables [ and Bl We will apply the following two LSRMs:

¢ ECLRM: The Extended-Complementary-Loss-Ratio-Method, see Section [2.41

We take the same parameter as in Dahms [3]. Note, the parameters g, of

ma2

Dahms [3] are not the variance minimising estimators for ;""" as presented

in ([4.2), but the effect on the estimators for the uncertainty is less than 0.5%.

e CL: We project payments S? . and reported amounts SZ-1 . Separately by the

Chain-Ladder-Method and couple the projections by the exposure

For the coupling of the projected estimates we take a credibility approach that is a
generalisation of the credibility interpretation of the Bornhuetter-Ferguson-Method,
which is the credibility mixture of a projected ultimate C; ; and an external given
ultimate U;. The credibility weight given to U; is proportional to the distance of

the projected ultimate and the last known value C; 7—;. This means we look at the
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credibility mixture

Cir—i Ci,g— Cir—i Cir—i Cir—i
Loy S iy Do (g - SRy
Cig o Cig Y Gy s+ ( Cig Ui
This works fine as long as C; ;—; < C; ;. If this is not the case we could take Cc;lli

Cir—i

instead of C Finally, generalising the above formula to M projected ultimates

we get the following credibility mixture
M
Zm:O azm Zr,rf]

M
Zm:O Oé;n

with
A
i,J i0—i

Reserves MSEP MSEP proxy CDR CDR proxy
CL Paid 10'165°612 1'517°861 1517480 1'004'481 1°004'164
CL Incurred 10665287 455802 455794 347709 347698
Mixed CL 10°539°276 676°047 675927 478°785 478°688
ECLRM Paid 107728771 467964 467°814 346°640 346°576
ECLRM Incurred | 10728771 472131 471°873 350°692 350534
Mixed ECLRM 10°728°771 469518 469324 348'110 3487009

Table 2: Estimates of Example 2

Tables 2lshows the resulting estimates for the reserves, for the mean squared error of
prediction (MSEP) and for the uncertainty of the claims development result (CDR).
Moreover, the table contains the linear approximations of the presented estimators.
Note, they differ from their original values by less than 0.1%.

For the estimation of the reserves within the ECLRM the credibility mixture has no
effect, because this method already combines both triangles in such a way that the
projection of payments lead to the same estimated reserves like the projection of
reported amounts. But in order to get estimates for the MSEP and the uncertainty
of the CDR such a credibility mixture may be useful, although in this example the
corresponding values differ only slightly. The linear approximations are the same
as presented in Dahms [3] and Dahms-Merz-Wiithrich [4].

The credibility weighted estimates for the Chain-Ladder-Methods tent more in the
direction of the projection of the reported amounts. But this does not have to be

the case. Although the weighted estimates for each single accident period always
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lie between the corresponding two estimates of the separate projections the overall
estimates (for all accident periods) do not have to be between the corresponding

two estimates of the separate projections.

7 Conclusion

Up to now in most cases discussions about the choice of reserving methods were
more philosophic than scientific. By introducing LSRMs we want to encourage
actuaries to spend more time on the investigation of drivers (exposures) behind the
development of portfolios, claims and claim properties. If such a driver is, at least
heuristically, identified and if the dependence structure is linear we have a very good
reason to look at the corresponding LSRM for reserving purposes. This means the
discussion about the choice may now be based on heuristic reasons about exposures
driving the claims development, which in our opinion is much better than a pure

philosophic approach.
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AP\ DP 0 1 2 3 4 5 6 7 8
0 32050 63514 67370 69284 70321 70977 71332 71482 71548
1 30773 61573 66438 68621 70325 71'423 72083 72°307
2 29605 59597 64276 67368 69235 70322 71141
3 30808 60403 66026 70363 72279 73266
4 30657 63370 68526 70632 72410
5) 35212 69321 74'343 76685
6 37919 74’154 807108
7 38967 78810
8 39°855
Table 3: Cumulative medical expenses (ME) of Example 1
AP\ DP 0 1 2 3 4 5 6 7 8
0 48629 100963 110555 114’119 116646 117497 117604 117643 117°663
1 45155 95475 106939 112°709 116'332 117'557 117964 118°116
2 44097 92817 103801 108188 110239 110983 111'171
3 427129 89627 101297 105186 107232 108126
4 427142 90153 100°367 103543 104'532
5) 51009 103592 114'433 117697
6 46°897  98°409 110°961
7 47179 102408
8 49°928

Table 4: Cumulative payments for incapacitation for work (IW) of Example 1
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Salary

98982

96°267

99243
100°374
107739
1107798
107°097
118°494
135846

Table 5: Insured salary of Example 1

o
AP \ DP 0 1 2 3 4 ) 6 7 8
0 -093 -4'144 -5'678 -6'851  -T7'869  -9962 -12°064 -12°877 -13°276
1 -488 -3'239 -5'115 -6280 -7676 -9'444 -10'771 -11°080
2 -606 -2'882 -4'799 -6'612 -8582 -10095 -10845
3 -667 -3'757 -6'411 -8983 -11010 -12'161
4 -750 -3'744 -6'318 -7'411  -8'149
5) -698 -5378 -8622 -9503
6 -1'432  -5'826 -8'093
7 -1°370  -4'765
8 -1°018

Table 6: Cumulative subrogation (Sub) of Example 1
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AP\ DP 0 1 2 3 4 5 6 7 8 9
0 1216632 1347072 1786877 2281606 2656224 2909307 3283388 3587549 37754'403 3'921°258
1 798924 1051912 1215785 1°349'939 1655312 1'926'210 2'132°833 2287311 2'567°056
2 1'115°636  1°387°387 1°930°867 2°177°002 2513171 2°931'930 3047368 3°182°511
3 1°052°'161 1°321206 1700132 1°971°303 2°298'349 2645113 3°003'425
4 808864 1°029'523 1'229'626 1°590°338 1'842°662 2'150°351
) 1°016'862 1251420 1°698°052 2'105°143 2°385°339
6 948°312 1°108°'791 1°315'524 1'487'577
7 917530 1°082°426 1°484°405
8 1°001°238 1376124
9 841°930

Table 7: Cumulative payments of Example 2

AP \ DP 0 1 2 3 4 5 6 7 8 9
0 33627115 5217243 4754900 4°381°677 4'136'883 4'094'140 4°018°736 3'971'591 3'941°391 37921°258
1 2'640'443 4'643'860 3'869°954 3248558 3102002 3019980 2°976°064 2946941 2°919°955
2 2'879°697 4785531 4045448 3467822 3377540 3341934 3'283'928 3'257'827
3 2°933'345 5299'146 4'451°963 3700809 3553391 3469505 3413921
4 2'768'181 4'658933 3936455 3512735 3'385'129 32987998
5 3'228'439 5°271'304 4'484'946 3°798°384 3°702°427
6 2°927°033 5067768 4066526 3704113
7 3083429 4790944 4°408°097
8 2'761°163 4'132°757
9 3045376

Table 8: Cumulative reported amounts of Example 2
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