Documentation of the LSRMT0OOLS

René Dahms (rene.dahms at math.ethz.ch)

February 17, 2017

Contents

Property CoorH 14
E 13 Propertv Defaultalphal . . . o . o oo 14

E 19 Property Defaul‘;vl 15
E 20 Property DefaultwUsed o o 15

............................... 15
............................... 16
3 Property Eigenvecton 16

|2__24 Property I 16

5.1.22 Function LSRM

5.1.23 Function LSRMfInitialised oo

5.1.25 Function LSRM

[5.1.26 Function LSRM

5.1.27 Function LSRMInflationInitialised

5.1.28 Function LSRM.

5.1.29 Function LSRMKl oo

e P

5.1.36 Function LLSR MMSEPDetaiI

mnction LSRM

8 nction RV

S - -
eventiruturebxposurefromChangingsSign
D D 3
eventPa posurefromChangingdign

5.1.42 Function LSRMS Lo

[5.1.43 Function LSR MSIEMA .« o o

H.2.3 Reinitialisin /%5

0.2.4 Implemented controls L

1 General

1.1 Introduction

In this documentation we will describe the functionality of the LSRMToOLS provided
by the files

e LSRMToOLS.DLL (ActiveX component) or

e LSRM_DLL.DLL (function based dynamic link library),

both in a 32bit and 64bit version, but the latter have not been tested very much up to
now (because I don’t have a 64bit version of Excel; but I got responds from others that
the 64bit versions work for them). Note, which version, 32bit or 64bit, you should use
depends on your Excel version and not on the version of Windows. The functionality can
be used by any program that supports ActiveX elements or dynamic link libraries. In
order to use it within Excel we provide corresponding sample VBA-interfaces

e LSRM _ToorLs_AcCTIVEX.XLA and
e LSRM _ToOOLS_DLL.XLA,

respectively.

Essentially, both ways provide the same functionality, see Figure L1 The main difference
is that the AxtiveX way provides an object that has to be registered with administrator
rights, see Section [L3.1] whereas the the other provides functions, which only have to be
“declared” before they could be used, see Section [1.3.2]

If you want to use the reference implementation for EXCEL we refer to Section 5.2/ together
with the included examples.

Windows layer Excel layer user layer

LSRM Tools_ActiveX.xla

links have to be adapted

ActiveX
(LSRMTools.dll)

has to be registered

Dynamic Link Library
(LSRMDILdI1)

LSRM_Tools DIl.xla

paths have to be adapted links have to be adapted

Figure 1: Overview of the program architecture

Note: The shortcut CTRL 4+ SHIFT + 1 is very important, since it (re)initialises LSRMs.
Note: If you specify the exposures R} and Rzl,j’mz by formulas, see Section 2.2] you may
have to change the regional settings to English (UK) or use the property Delimiters (if
you use the ActiveX component, otherwise it is the function LSRM_SetDelimiters),
see Section 2.21] in order to change the delimiters. The reason is, that by default the
decimal delimiter is taken from your regional settings, which may cause a conflict with

the default formula delimiter (;) or the default parameter delimiter (,).

4

1.2 License

LSRMTools is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

LSRMTools is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with LSRMTools. If not, see <http://www.gnu.org/licenses/>.

1.3 Installation
1.3.1 Installation of the ActiveX component

Before the functionality of the ActiveX component can be used it has to be registered.
Therefore, you (or someone with the appropriate rights) have to start a command prompt
(cmd.exe) with administrator rights. Then you have to switch to the folder where the file
LSRMTooOLS.DLL is located and run the following command:

regsvr32.exe LSRMTOOLS.DLL
In order to unregister the tool you can use the command prompt command
regsvr32.exe /u LSRMTOOLS.DLL

Note, if you have a 32bit Excel version you must use the 32bit version of the ActiveX
component, and if you have a 64bit Excel version it has to be the 64bit version of the
ActiveX component.

Moreover, in order to access the LSRMTo0OOLS from an Excel macro you have to add a
reference within the VBA environment of this Excel file, i.e. go to menu—references and
either select the tools from the provided list or search for the file LSRMTOOLS.DLL.

We provide a sample Excel interface within the file LSRM_T0OOLS_ACTIVEX.XLA. In or-

der to use it you may have to change the reference to the ActiveX component LSRMTOOLS.DLL
within the VBA environment of the file LSRM_TOOLS_ACTIVEX.XLA.

1.3.2 Installation of the function based dynamic link library

Before the functionality of the function based dynamic library can be used you have
to “declared” each of its functions. Within Excel this is done by the VBA directive
DECLARE, see Microsoft help pages for more information.

Within the Excel file LSRM_To0LS_DLL.XLA such declarations have been made within
the module DDLFUNCTION_DECLARATION. In order to use it you have to replace each
path with the path of the folder where your copy of the file LSRM_DLL.DLL is located.

Note: Recently we have observed some problems relating to saving changes of xla files
(the save button in the VBA environment may not save changes at all). Therefore, we have
added the procedure SAVEXLA to the module DDLFUNCTION_DECLARATION, which
does the saving correctly.

2 Functionality of LSRMTooOLS

Both, the ActiveX component and the function based dynamic library, provides the same
functionality. Only the way of accessing is different. The ActiveX component provides an
object named LSRM that itself provides functions, procedures and (read-only) properties.
In order to use them you have to create a new LSRM object. In VBA this might be done
by

Dim MyLSRM as New LSRM

For each function, procedure or property the LSRM_DLL.DLL provides a corresponding
function or procedure. Therefore, we will only document the ActiveX component and use
a Pascal syntax to specify functions, procedures and properties.

2.1 Function About(): Variant

Returns a string with some information about the version of the tool, the licence and the
author.

2.2 Function Init(LSRMName: Variant; What, M, 1, J, FuturePeriods: Long;
gammal, gamma2: Variant;
S, w, f, sigma, alpha, InflationRate: Double*): Variant

This function (re)initialises a LSRM with the provided parameters. If something went
wrong the function returns a corresponding error message otherwise an empty string. The
parameters are as follows.

Note: The exposure parameters gammal and gamma2 may or may not depend on ac-
cident periods. If both depend on accident periods we call the LSRM a STANDARDLSRM
and if both do not depend on accident periods we call it SIMPLIFIEDLSRM. Mixed cases
are not allowed!

LSRMName: Specifies the name of the LSRM that should be initialised. If there does
not exist a LSRM of that name a new LSRM will be created.

What: Specifies a field of bits that indicates which parameter has to be (re)initialised.
The possible values are shown in Table[Il. Moreover, within What some calculation
flags can be specified, see Table

M: Specifies the number of claim properties.

Constant | Value | Description
CLSRMINITGEOMETRY 20 | initialises number of claim properties M, ac-
cident periods I, development periods J, and
tail periods FuturePeriods, see Section [3.2]
CLSRMINITGAMMA1 2! | initialises exposure parameter vﬁlh i
CLSRMINITGAMMA2 22 | initialises exposure parameter 7%17’,;22’l
cLSRMINITS 2% | initialises claim properties S}’
cLSRMINITW 24 | initialises user defined weights wZZI and
w?}f +1
CLSRMUSEDEFAULTW 2° | indicates that default weights, see
[1, formula (3.3)], should be used
CcLSRMINITF 26 | initialises user defined development factors
I
CLSRMUSEDEFAULTF 27 | indicates that default development factors,
see [1, formula (3.1)], should be used
CLSRMINITSIGMA 28 | initialises user defined covariance parameter
O']:,nl’m2
CLSRMUSEDEFAULTSIGMA 29 | indicates that default covariance parameter,
see [1, formula (4.2)], should be used
CLSRMINITALPHA 219 | initialises user defined mixing weights a"
CLSRMUSEDEFAULTALPHA 2 1 indicates that default mixing weights should
be used, i.e. o) =
CLSRMINITINFLATIONRATE 2'2 | initialises inflation rates, see Section B.1]

Table 1: Initialisation constants

I: Specifies the number of accident periods.
J: Specifies the number of development periods without tail periods.

FuturePeriods: Specifies the number of tail development periods. In the following we
will refer to the number of future periods by K.

gammal Specifies the exposure parameter V?Ig’,lh,j for 0 < m,l < M,0<1¢ <1 and
0 <k, j <J-—14FuturePeriods. There are the following three different ways to
do that:

e gammal is a two dimensional array, where the second dimension contains the

following 7 columns
m,l

m, L, 4, k, h, jand ;7 ..
Zero values for vf'";lh ; do not have to be specified.

e If the exposure parameter V?é,lh,j are independent of ¢ and h those columns
can be omitted. Hence gammal is a two dimensional array, where the second
dimension contains the following 5 columns

. m,l
m, 1, k, jand ;37 .

7

Zero values for vf'";lh ; do not have to be specified.

e If the exposures R} can be calculated as “linear combination of the triangles
5717 then gammal can be specified by a string that contains a formula for
each exposure R]}. Those formulas have to be separated by semicolons. The
following syntax elements are supported:

Signs + and —
Operators +, —, * and /, where the calculation is done element by element
Constant real numbers, representing a constant triangle

Collection of J + FuturePeriods real numbers separated by commata
and enclosed within square brackets, representing a triangle with constant
columns

Claim property: S(m), where 0 <m <M
Pairs of round brackets to specify the order of calculation
Functions:
- Cum(A): cumulates triangle A
- Inc(A): takes the increments of A
- Column(k, A): sets all columns of A to zero, except for the k-th column

Examples for formulas of R, are:
- “S(O)”: Zlk = S?,k

1y

“2*8(0)—8(1)”: :):Lk = 2 * S,Sk - ik
“Cum(S(0))": Ry, := Z?:o S9.. i.e. the Chain Ladder exposures

Z,j7
“Cum(S(1))-Cum(S(0))": Ry = Y5 Sk — 89,
amounts and SB , are payments then R} represent the corresponding case
reserves.
“[1,0.5,0,0/*Cum(S(1))-[1,0.5,0,0]*Cum(S(0))+[0,0.5,1,1]*Cum(S(1))”:
If the total number of development periods J + FuturePeriods + 1 equals
4 and if SZ-{ ;. are reported amounts and SB are payments then the formula

represents the following exposure:

if S;) are reported

- case reserves for the first development period
- a 50% — 50% mixture of case reserves and reported amounts for the
second development period
- reported amounts for the last two development periods (Chain-Ladder
on reported amounts)
Note: The default decimal delimiter (defined by the regional settings),
the default formula delimiter (;) and the default parameter delimiter ()
can be changed by the property Delimiters, see Section 2.21]

If cLSRMINITGAMMA1 has been excluded from the parameters What the corre-
sponding model parameter gammal will not be reinitialised.

Note: The specifications of gammal and gamma?2 have to be consistent. That
means if you specify gammal independent on accident periods the specification of
gamma?2 has to be independent of accident periods, too.

8

gamma?2: Specifies the exposures Rzl,j’mz. There are the following three different ways
to do that:

e gamma? is a two dimensional array, where the second dimension contains the
following 8 columns

l

. . m,
my, Mg, lu 2, ka h7 J and %,k,h,j’

where 0 < my, mo, IS M, 0<i<Tand 0< k, 5 < J—1+ K. Zero values

for 7%17’,;22’l do not have to be specified.

e If the exposure parameter fyﬁl’,ﬁ’l are independent of ¢ and h those columns

can be omitted. Hence gamma2 is a two dimensional array, where the second
dimension contains the following 6 columns

. m,l
mi,ma, [, k, j and Yi kg
) 7l 3
Zero values for +;}';"*" do not have to be specified.

e If the exposures R} can be calculated as “linear combination of the trian-

gles” S}, then gam’ma2 can be specified by a string that contains a formula for
each exposure 1], In addition to the specification of formulas for gammal
the following syntax elements are supported:

— Power operator ©

— Functions:
- Abs(A): taking the absolute value of each entry of the triangle A
- Sqrt(A): taking the square root of each entry of the triangle A

- Min(A, B) and Max(A, B): element by element minimum and maxi-
mum of the triangles A and B

If cLSRMINITGAMMA?Z2 has been excluded from the parameter What the corre-
sponding model parameter gamma2 will not be reinitialised.

Note: The specification of gammal and gamma2 have to be consistent. That
means if you specify gamma2 independent on accident periods the specification of
gammal has to be independent of accident periods, too.

S: Represents the first entry of a three dimensional array (index by 0 <m < M, 0 <i <[
and 0 < k < J) of float values that defines the claim properties S}. Note, the
number of elements of each dimension will be taken from the parameters M, I and
J. If no claim property has to be reinitialised you may take a dummy variable of
type float and exclude CLSRMINITS from the parameter What.

w: Represents the first entry of a four dimensional array (index by <m < M, 0<i <]

and 0 < k < J—1+41g+) of float values that defines the not normalised weights w%’l

I+1 : : I I+1
and w}y" ™. By not normalised we mean that the final weights w]y" and w]y ™ are

taken from the specified array and are normalised such that the sum over k£ always
. . . . m,I m,I+1
equals one. Moreover, during the normalization we set a weight w, " and w,

to zero if the corresponding exposure R} is zero. Note, the number of elements of

9

each dimension will be taken from the parameters M, I, J and FuturePeriods. If
no weight has to be reinitialised you may take a dummy variable of type float and
exclude CLSRMINITW from the parameter What. If CLSRMUSEDEFAULTW is
included within the parameter What the specified weights will be ignored and the
standard weights will be taken, see [1, formula (3.3)].

f: Represents the first entry of a two dimensional array (index by m < M and 0 <
k < J—1+ K) of float values that defines the development factors f". Note, the
number of elements of each dimension will be taken from the parameters M and J +
FuturePeriods — 1. If no development factor has to be reinitialised you may take a
dummy variable of type float and exclude CLSRMINITF from the parameter What.
If cLSRMUSEDEFAULTF is included within the parameter What the specified
development factors will be ignored and the standard weighted estimators, using
the active weights, will be taken, see [I, formula (3.1)].

sigma: Represents the first entry of a three dimensional array (index by 0 < mq, my < M

and 0 < k < J — 1+ 1g+) of float values that defines the covariance parameters

o, ", Note, the number of elements of each dimension will be taken from the
parameters M, J and FuturePeriods. If no covariance parameter has to be reini-
tialised you may take a dummy variable of type float and exclude CLSRMINITSIGMA
from the parameter What. If CLSRMUSEDEFAULTSIGMA is included within the
parameter What the specified variance parameters will be ignored and the standard

unbiased estimators, using the active weights, will be taken, see [I,, formula (4.2)].

alpha: Represents the first entry of a two dimensional array (index by 0 < m < M and
0 < i < I) of float values that defines the mixing weights o[". Note, the number
of elements of each dimension will be taken from the parameters M and I. If no
mixing weight has to be reinitialised you may take a dummy variable of type float
and exclude CLSRMINITALPHA from the parameter What. If CLSRMUSEDE-
FAULTALPHA is included within the parameter What the specified mixing weights
will be ignored and we take)" = 1.

InflationRate Represents the first entry of a three dimensional array (index by 0 <
m<M,0<i<Tand0<k<J+ K) of float values that defines inflation rates.
Note, the number of elements of each dimension will be taken from the parameters
M, I and J + FuturePeriods. If no inflation rate has to be reinitialised you may
take a dummy variable of type float and exclude CLSRMINITINFLATIONRATE from
the parameter What. For technical details see, Section 3.1l

2.3 Procedure Reset(LSRMName: Variant)

Deletes, if found, the LSRM with the specified name LSRMName. If LSRMName is
an empty string all LSRMs will be deleted.

10

2.4 Property alpha(LSRMName: Variant; m,i: Long): Variant; read-only

Returns the value of the used mixing weight ;" for the LSRM with name LSRMName.
If there does not exist such a LSRM, if something went wrong or if some indices are out
of range a corresponding error message will be returned.

2.5 Property CalcInfo(LSRMName: Variant;
Step, InfoType: Long): Variant, read-only

Returns if the internal calculation step Step has been done and how long it took, for
more information about the internal calculation engine see Section 4l The parameter
InfoType corresponds to:

0: The name of the step.
1: TRUE or FALSE for whether or not the calculation step has been calculated.
2: The time for the calculation step in milliseconds.

If there does not exist such a LSRM, if something went wrong or if some indices are out
of range a corresponding error message will be returned.

2.6 Property CalculationFlags(LSRMName: Variant): Variant; read-only

Returns whether or not a calculation flag, see Table [2] has been set. The LSRM with
addressed by its name LSRMName. If there does not exist such a LSRM or if something
went wrong a corresponding error message will be returned.

2.7 Property CDR(LSRMName: Variant;
m, i, Proxy, Part, Tail: Long): Variant; read-only

Returns the value of the one year uncertainty of the claims development result (CDR) for
the LSRM with name LSRMName. If there does not exist such a LSRM, if something
went wrong or if some indices are out of range a corresponding error message will be
returned.

LSRMName: Specifies the LSRM .

m: Specifies the claim property. If m ¢ {0, ..., M} the overall CDR uncertainty weighted
by the mixing weights /" will be returned.

i: Specifies the accident period. If i € {0,...,7} the total CDR uncertainty of claim
property m will be returned.

Proxy: Specifies whether (Proxy = 1) or not (Proxy = 0) the approximation of the
operator H() should be taken.

11

Part: Specifies which part of the CDR uncertainty should be taken, i.e. the process
variance (Part =0), the parameter error (Part =1) or the sum of both (Part = 2).

Tail: Specifies how to deal with the tail uncertainty of the CDR. If Tail = 0 it will be
ignored, if Tail = 1 it will be taken into account and if Tail = 2 only the tail
uncertainty will be returned.

2.8 Property CDRCov(LSRMName: Variant;
ml, m2 Proxy, Part, Tail: Long): Variant; read-only

Returns the (m1,m2) entry of the covariance matrix associated with the one period uncer-
tainty of the CDR, i.e. the corresponding addend of the summation in [Il Estimator 5.6].
For more detailed information about this topic see Section 3.3l If there does not exist such
a LSRM, if something went wrong or if some indices are out of range a corresponding
error message will be returned.

LSRMName: Specifies the LSRM.
m1l and m2: Specify the addend of the summation.

Proxy: Specifies whether (Proxy = 1) or not (Proxy = 0) the approximation of the
operator H() should be taken.

Part: Specifies which part of the CDR uncertainty should be taken, i.e. the process
variance (Part =0), the parameter error (Part =1) or the sum of both (Part = 2).

Tail: Specifies whether (Tail = 1) or not (Tail = 0) tail uncertainty of the CDR should
be taken into account.

2.9 Property CDRCovEigenvalue(LSRMName: Variant;
m, Proxy, Part, Tail: Long): Variant; read-only

Returns the m-th largest eigenvalue of the covariance matrix associated with the one
period uncertainty of the CDR, see Section B.3l If there does not exist such a LSRM, if
something went wrong or if some indices are out of range a corresponding error message
will be returned.

LSRMName: Specifies the LSRM.

m: Specifies which eigenvalue should be returned. Eigenvalues are arranged in ascending
order and numbering starts with zero, i.e. m = 0 corresponds to the smallest
eigenvalue.

Proxy: Specifies whether (Proxy = 1) or not (Proxy = 0) the approximation of the
operator H() should be taken.

12

Part: Specifies which part of the CDR uncertainty should be taken, i.e. the process
variance (Part =0), the parameter error (Part =1) or the sum of both (Part = 2).

Tail: Specifies whether (Tail = 1) or not (Tail = 0) the tail uncertainty of the CDR
should be taken into account.

2.10 Property CDRCovEigenvector(LSRMName: Variant;
m, |, Proxy, Part, Tail: Long): Variant, read-only

Returns the 1-th coordinate of the eigenvector corresponding to the m-th largest eigenvalue
of the covariance matrix associated with the one period uncertainty of the CDR, see
Section 3.3l If there does not exist such a LSRM, if something went wrong or if some
indices are out of range a corresponding error message will be returned.

LSRMName: Specifies the LSRM.

m: Specifies the eigenvector that should be returned (numberings starts with zero). The
eigenvectors are in the same order like the corresponding eigenvalues, which are
arranged in ascending order. For example m =3 stands for the eigenvector of the
fourth smallest eigenvalue.

l: Specifies which coordinate of the eigenvector that should be returned.

Proxy: Specifies whether (Proxy = 1) or not (Proxy = 0) the approximation of the
operator H() should be taken.

Part: Specifies which part of the CDR uncertainty should be taken, i.e. the process
variance (Part =0), the parameter error (Part =1) or the sum of both (Part = 2).

Tail: Specifies whether (Tail = 1) or not (Tail = 0) the tail uncertainty of the CDR
should be taken into account.

2.11 Property CDRDetail(LSRMName: Variant; m1,m2,il,i2: Long;
Proxy, Part, Tail: Long): Variant; read-only

Returns the addends of the summation in [I, Estimator 5.6], i.e. the formula for the
calculation of the overall uncertainty of the CDR. If there does not exist such a LSRM, if
something went wrong or if some indices are out of range a corresponding error message
will be returned.

LSRMName: Specifies the LSRM.
ml, m2, il and i2: Specify the addend of the summation.

Proxy: Specifies whether (Proxy = 1) or not (Proxy = 0) the approximation of the
operator H() should be taken.

13

Part: Specifies which part of the CDR uncertainty should be taken, i.e. the process
variance (Part =0) or the parameter error (Part =1).

Tail: Specifies how to deal with tail uncertainty of the CDR. If Tail = 0 it will be ignored,
if Tail = 1 it will be taken into account and if Tail = 2 only the tail uncertainty
will be returned.

2.12 Property CoorF(LSRMName: Variant;
m, ik, h,j: Long): Variant, read-only

Returns the coordinate (F[’;g)i” of the operator I}, see [1, formula (3.5)], for the LSRM

with name LSRMName. If there does not exist such a LSRM , if something went wrong
or if some indices are out of range a corresponding error message will be returned.

2.13 Property Defaultalpha(LSRMName: Variant; m,i: Long): Variant; read-only

Returns the value of the default mixing weights " = 1 for the LSRM with name
LSRMName. If there does not exist such a LSRM, if something went wrong or if
some indices are out of range a corresponding error message will be returned.

2.14 Property DefaultalphaUsed(LSRMName: Variant): Variant, read-only

Returns whether or not default mixing weights a]* are used for the LSRM with name
LSRMName. If there does not exist such a LSRM or if something went wrong a
corresponding error message will be returned.

2.15 Property Defaultf(LSRMName: Variant; m, k: Long): Variant; read-only

Returns the value of the default development factor f*, see [I, formula (3.1)], for the
LSRM with name LSRMName. If there does not exist such a LSRM, if something
went wrong or if some indices are out of range a corresponding error message will be
returned.

2.16 Property DefaultfUsed(LSRMName: Variant): Variant read-only

Returns whether or not default development factor f]", see [I}, formula (3.1)], are used for
the LSRM with name LSRMName. If there does not exist such a LSRM or if something
went wrong a corresponding error message will be returned.

14

2.17 Property Defaultsigma(LSRMName: Variant,
ml, m2 k: Long): Variant; read-only

Returns the value of the default covariance parameter o, ", see [Il, formula (4.2)], for the
LSRM with name LSRMName. If the calculation flag CLSRMUSEWEIGHTSFORDE-
FAULTSIGMA has not been set, see function Init in Section 2.2, the default covariance
parameters will be calculated by formula [, formula (4.2)], but with R}} instead of wj},
(the normalising constant will be adapted accordantly). If there does not exist such a
LSRM , if something went wrong or if some indices are out of range a corresponding error
message will be returned.

2.18 Property DefaultsigmaUsed(LSRMName: Variant): Variant; read-only
Returns whether or not default covariance parameter o, """, see [II, formula (4.2)], are

used for the LSRM with name LSRMName. If there does not exist such a LSRM or if
something went wrong a corresponding error message will be returned.

2.19 Property Defaultw(LSRMName: Variant; n,m, i, k: Long): Variant; read-only

Returns the value of the default weight wﬂ’l or wﬁ;”l for the LSRM with name LSRMName.
If there does not exist such a LSRM, if something went wrong or if some indices are out

of range a corresponding error message will be returned.

The values of n have the following meaning:

n = 0: Not normalised weights are returned, i.e. wi’:";g = R;’fk fori+k<I.

n = 1: Normalised weights w%’l for observing period I are returned, see [Il, formula (3.3)].

n = 2: Normalised weights wﬁ;”l for observing period I+1 are returned, see [I, Assumption 5.1].

2.20 Property DefaultwUsed(LSRMName: Variant): Variant; read-only

Returns whether or not default weights, see [I], formula (3.3) and Assumption 5.1], are
used for the LSRM with name LSRMName. If there does not exist such a LSRM or if
something went wrong a corresponding error message will be returned.

2.21 Property Delimiters(): Variant; read-write

A string that contains the decimal delimiter, the formula delimiter and the parameter
delimiter in this order. By default the regional setting is used to set the decimal delimiter.
The default values for the formula delimiter and the parameter delimiter are semicolon
and comma, respectively.

15

All delimiters have to be different from each other. Letters and digits are not allowed.
Moreover the following characters are forbidden: +-*/"()[].

2.22 Property Eigenvalue(LSRMName: Variant; i,k, m: Long): Variant, read-only
mi,ma2

Returns the m-th largest eigenvalue of the covariance matrix (a,zmm2 R)m . for the
’ 1,m2

LSRM with name LSRMName. If there does not exist such a LSRM, if something went
wrong or if some indices are out of range a corresponding error message will be returned.

2.23 Property Eigenvector(LSRMName: Variant;
i,k,m,1: Long): Variant, read-only
Returns the 1-th coordinate of the eigenvector corresponding to the m-th largest eigenvalue
of the covariance matrix (U,Z'“’mzR?,j’mz)) for the LSRM with name LSRMName.
) mi,m

If there does not exist such a LSRM, if sorﬁething went wrong or if some indices are out
of range a corresponding error message will be returned.

2.24 Property f(LSRMName: Variant; m, k: Long): Variant; read-only

Returns the used development factor f;" for the LSRM with name LSRMName. If
there does not exist such a LSRM , if something went wrong or if some indices are out of
range a corresponding error message will be returned.

2.25 Property I(LSRMName: Variant): Variant, read-only

Returns the number of accident periods I for the LSRM with name LSRMName. If
there does not exist such a LSRM or if something went wrong a corresponding error
message will be returned.

2.26 Property InitialisedParameters(LSRMName: Variant): Variant; read-only

Returns a bit field that indicates which parameters have been initialised for the LSRM
with name LSRMName. All entries of Table [Il except for CLSRMUSEDEFAULTAL-
PHA, CLSRMUSEDEFAULTF, CLSRMUSEDEFAULTSIGMA and CLSRMUSEDEFAULTW
are possible flags. If there does not exist such a LSRM or if something went wrong a
corresponding error message will be returned.

2.27 Property J(LSRMName: Variant): Variant; read-only

Returns the number of development periods J for the LSRM with name LSRMName.
If there does not exist such a LSRM or if something went wrong a corresponding error
message will be returned.

16

2.28 Property K(LSRMName: Variant): Variant, read-only

Returns the number of future development (tail) periods K for the LSRM with name
LSRMName. If there does not exist such a LSRM or if something went wrong a
corresponding error message will be returned.

2.29 Property MaxVarCoefl(): Double; read-write

Specifies the variable MaxVarCoefl that is used for the estimation of the default co-

variance parameters o, """, see Section [3.41

Note: Changing this value will affect the (re-)estimation of the covariance parameters
my,ma2

ogh of every LSRM.

2.30 Property MaxVarCoef2(): Double; read-write

Specifies the the variable MaxVarCoef2 that is used for the estimation of the default
covariance parameters, see Section 3.4l

Note: Changing this value will affect the (re-)estimation of the covariance parameters
o™ of every LSRM.

2.31 Property M(LSRMName: Variant): Variant, read-only

Returns the number of claim properties M for the LSRM with name LSRMName. If
there does not exist such a LSRM or if something went wrong a corresponding error
message will be returned.

2.32 Property ModelType(LSRMName: Variant): Variant; read-only
Returns the type of the LSRM with name LSRMName. Values are as follows strings:

e “Normal LSRM”: The exposure parameter V?é,lh,j and vz}j’Z?J might depend on

accident periods ¢ and h.

e “Simplified LSRM without inflation”: The exposure parameter vﬂlh ; and 7:'21,:7;21

do not depend on accident periods i and A and we do not have any inflation.
e “Simplified LSRM with inflation”: The exposure parameter V%fh,j and vﬁlv}ﬁQ’l do
not depend on accident periods ¢ and h and we might have inflation.

17

For more detailed information see Section Ml If there does not exist such a LSRM or if
something went wrong a corresponding error message will be returned.

2.33 Property MSEP(LSRMName: Variant,
m, i, Proxy, Part, Tail: Long): Variant, read-only

Returns the value of the ultimate uncertainty, i.e. the mean squared error of prediction
(MSEP), for the LSRM with name LSRMName. If there does not exist such a LSRM,
if something went wrong or if some indices are out of range a corresponding error message
will be returned.

LSRMName: Specifies the LSRM .

m: Specifies the claim property. If m ¢ {0,..., M} the overall MSEP weighted by the
mixing weights o/ will be returned.

i: Specifies the accident period. If i & {0,...,I} the total MSEP of claim property m
will be returned.

Proxy: Specifies whether (Proxy = 1) or not (Proxy = 0) the approximation of the
operator H() should be taken.

Part: Specifies which part of the MSEP should be taken, i.e. the process variance (Part =
0), the parameter error (Part = 1) or the sum of both (Part = 2).

Tail: Specifies how to deal with the tail uncertainty. If Tail = 0 it will be ignored, if
Tail = 1 it will be taken into account and if Tail = 2 only the tail uncertainty will
be returned.

2.34 Property MSEPCov(LSRMName: Variant,
ml, m2 Proxy, Part, Tail: Long): Variant; read-only

Returns the (m1,m2) entry of the covariance matrix associated with the ultimate un-
certainty, i.e. the corresponding addend of the summation in [I, Estimator 4.11]. For
more detailed information about this topic see Section 3.3l If there does not exist such a
LSRM , if something went wrong or if some indices are out of range a corresponding error
message will be returned.

LSRMName: Specifies the LSRM.
ml and m2: Specify the addend of the summation.

Proxy: Specifies whether (Proxy = 1) or not (Proxy = 0) the approximation of the
operator H() should be taken.

Part: Specifies which part of the MSEP should be taken, i.e. the process variance (Part
=0), the parameter error (Part =1) or the sum of both (Part = 2).

18

Tail: Specifies whether (Tail = 1) or not (Tail = 0) the tail uncertainty should be taken
into account.

2.35 Property MSEPCovEigenvalue(LSRMName: Variant,
m, Proxy, Part, Tail: Long): Variant; read-only

Returns the m-th largest eigenvalue of the covariance matrix associated with the ultimate
uncertainty, see Section[3.3l If there does not exist such a LSRM , if something went wrong
or if some indices are out of range a corresponding error message will be returned.

LSRMName: Specifies the LSRM.

m: Specifies which eigenvalue should be returned. Eigenvalues are arranged in ascending
order and numbering starts with zero, i.e. m = 0 corresponds to the smallest
eigenvalue.

Proxy: Specifies whether (Proxy = 1) or not (Proxy = 0) the approximation of the
operator H() should be taken.

Part: Specifies which part of the MSEP should be taken, i.e. the process variance (Part
=0), the parameter error (Part =1) or the sum of both (Part = 2).

Tail: Specifies whether (Tail = 1) or not (Tail = 0) the tail uncertainty should be taken
into account.

2.36 Property MSEPCovEigenvector(LSRMName: Variant;
m, |, Proxy, Part, Tail: Long): Variant, read-only

Returns the 1-th coordinate of the eigenvector corresponding to the m-th largest eigenvalue
of the covariance matrix associated with the ultimate uncertainty, see Section B.3l If there
does not exist such a LSRM , if something went wrong or if some indices are out of range
a corresponding error message will be returned.

LSRMName: Specifies the LSRM.

m: Specifies the eigenvector that should be returned (numberings starts with zero). The
eigenvectors are in the same order like the corresponding eigenvalues, which are
arranged in ascending order. For example m =3 stands for the eigenvector of the
fourth smallest eigenvalue.

l: Specifies which coordinate of the eigenvector should be returned.

Proxy: Specifies whether (Proxy = 1) or not (Proxy = 0) the approximation of the
operator H() should be taken.

19

Part: Specifies which part of the MSEP should be taken, i.e. the process variance (Part
=0), the parameter error (Part =1) or the sum of both (Part = 2).

Tail: Specifies whether (Tail = 1) or not (Tail = 0) the tail uncertainty should be taken
into account.

2.37 Property MSEPDetail(LSRMName: Variant; m1, m2,i1,i2: Long;
Proxy, Part, Tail: Long): Variant, read-only

Returns the addends of the summation in [I, Estimator 4.11}, i.e. the formula for the
calculation of the overall ultimate uncertainty. If there does not exist such a LSRM, if
something went wrong or if some indices are out of range a corresponding error message
will be returned.

LSRMName: Specifies the LSRM.
ml, m2, il and i2: Specify the addend of the summation.

Proxy: Specifies whether (Proxy = 1) or not (Proxy = 0) the approximation of the
operator H() should be taken.

Part: Specifies which part of the MSEP should be taken, i.e. the process variance (Part
=0) or the parameter error (Part =1).

Tail: Specifies how to deal with tail uncertainty. If Tail = 0 it will be ignored, if Tail = 1
it will be taken into account and if Tail = 2 only the tail uncertainty will be returned.

2.38 Property R1(LSRMName: Variant; m,i,k: Long): Variant; read-only

Returns the value of the exposure R}} for the LSRM with name LSRMName. If there
does not exist such a LSRM , if something went wrong or if some indices are out of range
a corresponding error message will be returned.

2.39 Property R2(LSRMName: Variant; m,i,k: Long): Variant; read-only

Returns the value of the exposure R;}"™ for the LSRM with name LSRMName. If
there does not exist such a LSRM , if something went wrong or if some indices are out of
range a corresponding error message will be returned.

2.40 Property S(LSRMName: Variant; m, i, k: Long): Variant; read-only

Returns the value of the claim property S} for the LSRM with name LSRMName. If
there does not exist such a LSRM , if something went wrong or if some indices are out of
range a corresponding error message will be returned.

20

2.41 Property sigma(LSRMName: Variant; m1, m2, k: Long): Variant; read-only

Returns the value of the used covariance parameter o, "™ for the LSRM with name
LSRMName. If there does not exist such a LSRM, if something went wrong or if some
indices are out of range a corresponding error message will be returned.

2.42 Property Ultimate(LSRMName: Variant; m, i, Tail: Long): Variant; read-only

Returns the value of the ultimate outcome, i.e. > i Si, for the LSRM with name
LSRMName. If i ¢ {0,...,M} the total ultimate over all accident periods will be
returned. If m & {0,..., M} the mixing weights o are used to get the overall ultimate
of all claim properties. The parameter Tail specifies whether (Tail = 1) or not (Tail = 0)
any tail development should be taken into account. If there does not exist such a LSRM,
if something went wrong or if some indices are out of range a corresponding error message

will be returned.

2.43 Property w(LSRMName: Variant; n,m, i, k: Long): Variant, read-only
Returns the value of the used weight w%" or wﬂ’”l for the LSRM with name LSRMName.

If there does not exist such a LSRM, if something went wrong or if some indices are out
of range a corresponding error message will be returned.

The values of n have the following meaning;:

n = 0: Not normalised weights are returned, i.e. wy; = R} fori+k < I.

n = 1: Normalised weights w? k’l for observing period I are returned.

n = 2: Normalised weights wﬂ’”l for observing period I 4 1 are returned.

3 Technical notes

The implementation of LSRMTOOLS is based on the paper [I]. Unfortunately, it con-
tains some errors. They are not critical for the main results but for the implementation.
Therefore, we added a revised version of the paper.

Moreover, in the implementation we added three features. The first deals with inflation,
see Section [B.], and the second with tails, see Section .2 and the third with covariances
of the estimated uncertainties, see Section 3.3 Moreover, we put a bit more effort in
the calculation of exposures, see Section [3.0] in the estimation of the standard covariance
parameters o, """, see Section [3.4] and in the estimation of uncertainties, see Section

21

3.1 LSRMs and inflation

It is well known, that inflation of payments does not go along with many reserving meth-
ods. In order to handle them anyhow one usually makes an assumption on the inflation
rates, deflate the payments, projects them and inflate the resulting cash flows again. This
works for the estimation of IBNR, reserves or ultimates. But how to inflate the estimated
uncertainties?

In the following we will present how this can be solved with LSRMs. Therefore, assume
the claim properties 577} satisfy the assumptions of a LSRM with development factors f;",
covariance parameters ;""" and exposures Rj} = I/} S and R]}"™ = T/} 8"k,
Then we have:

E[SﬁH‘Dk] = " ;”k and

mi mo o mi,m2 pmi,ma
COV[Si,kHaSi,kH‘Dk] = Ok R

Now assume we know the inflation 7]}. That means we want to study the inflated claim
properties

Nm PR m m

ik T T kP ke
Then we get
. Si—l-k
m — m m _ m,,m m

E[i,k+1‘Dk} = ri,k+1E[Si,k+1‘Dk} = Jk Ti,k—l—lri,km’

where the quotient of the two vectors S“** and r** is taken component by component.
In the same way we conclude

i+k

le ~m2 _ mi,m2_mi ma2 mi,m2
COV[ik+10 i,Hl‘Dk} =0, T i1l ik CitE

Therefore, the inflated claim properties satisfy the assumptions on a LSRM with expo-

sures . .
. Sz—l—k - Sz—l—k

mo.__ m mi,m2 mi m2 mi,m2
ik = Tika1 ik itk and Ri,k = kT k1t ok >

and the same model parameters f;* and o, like the original LSRM.
We implemented inflations according to those formulas.

3.2 LSRMs with Tails

We implemented the handling of tails. Therefore, we introduce the number of future (or
tail) periods K, which are specified within the parameter FuturePeriods of the function
Init, see Section In case of K > 0 we

e implement the projection of claim properties for the whole time horizon of the
development, i.e. ST, forall 0 <k < J+ K.

e cstimate the ultimate and the one period uncertainties for one additional tail period.

22

The projection of claim properties only requires tail information within the exposure
parameters vﬂlh ; and within the development factors f;". The first is usually given by
the choice of the reserving method. But for the development parameters we need manual
inputs via the parameters f of the function Init, see Section 2.2 If no such manual
development factors are specified zero is taken as default value.

The estimation of uncertainties is a bit more tricky. The main problem is how to esti-
mate the covariance parameters o, """ for all tail periods J < k < J 4+ K. One possible
way to try this is to follow the suggestion of T. Mack and to take an exponential decay.
But without some more technical effort this only works for variances and not for covari-
ance matrices. Therefore, we decided to “collect” the whole tail uncertainty within one
additional development period and take by default

UT1,m2 = O_T1,m2

Manual covariance parameters can be specified by the parameter sigma of the function
Init, see Section 2.2

Moreover, the parameters o™ are not well defined by [I, formula (4.6)]. Therefore,
we use the following approximation:

\/ mhml mz,m2Rm17m1 Rmz,m2R
*mi,mz ,__ *mhmz 0,J-1 OJ !

% 051
m17m1 m27m2 mi,mi m2,1Mm?2 mi1 m2
\/ Ro J-1 Ro J—-1 R R

Unfortunately, this approximation may lead to larger solvency uncertainty than ulti-
mate uncertainty. By setting the flag CLSRMUSEMSEPIFTAILCDRISLARGER (func-
tion Init) we can bound the tail solvency uncertainty by the corresponding ultimate
uncertainty.

Then the tail uncertainties are estimated by additional addends for the period J in the
approximated formula [I, Estimator 4.11] (or [1I, Estimator 5.6]).

Note: We only adapted the formulas of the non-tail case to get some estimation for the
tail uncertainties.

3.3 Estimation of resulting covariance matrices

If you cancel the summation over m; and ms in the formulas for the estimation of un-
certainties (see [I, Estimator 4.11] and [1, Estimator 5.6]) you automatically get a ma-
trix that can be interpreted as covariance matrix of the corresponding uncertainties.
This is the way we implemented the properties CDRCov and MSEPCov. In or-
der to analyse non-negative definiteness of those matrices we added the corresponding
properties CDRCovEigenvalue, CDRCovEigenvector, MSEPCovEigenvalue and
MSEPCovEigenvector.

3.4 Estimation of the default covariance parameters

In order to estimate the development parameters f;"" we often use manual weights wy, to
exclude some observed strange development. The question now is if we should use those
manual weights for the estimation of the covariance parameters, too? If the calculation

23

flag CLSRMUSEWEIGHTSFORDEFAULTSIGMA is set within the parameter What of the
function Init we will use the same weights as for the estimation of the development factors
fi* otherwise we will always use the default weights.

In general we have the problem that our model is statistically over-parametrised for late
development periods if we do not have enough accident periods. Moreover, this problem
gets bigger and bigger the more claim properties we have. We do not see a standard
method to compensate for this.

Nevertheless, we implemented a “smooth” way of estimating standard covariance param-
eters o™ for cases where the formula [I, formula (4.2)] is not well defined. We use the
“exponential decay” approach of T. Mack to estimate the variances (i.e. the diagonals of
the covariance matrices) and projected the other covariance entries proportional to the
decay of the corresponding variances:

mi,my1 __M2,m2

o o
mi,mz . _mi,m2 k+1 k+1
Ol =0y — T for my # mo.
O O

Moreover, computing the default covariance parameters according to [1l formula (4.2)]
we may get normalising constants Z which should be equal to zero but differ slightly
from zero, because of numerical artefacts. Therefore we introduced two global variables
MaxVarCoefl and MaxVarCoef2 and set the variance

—-mi,mz ,__
o =0

if

~my,ma Fm1 Ting m1 pmi

o, | > |fi" fy o A% {maX(Ri7k,Ri7k)} MaxVarCoefl + MaxVarCoef2.
The default values for both variables are 100'000'000. They can be changed by the prop-
erties MaxVarCoefl and MaxVarCoefl.

3.5 Estimation of uncertainties

In some cases, for instance a Chain Ladder projection of reported amounts that decrease
rapidly at the end, you may observe that the estimated uncertainties decrease if you
add another development period. In order to explain this behaviour we take a look at
the approximation of the uncertainties, see [I, Estimator 4.11 and Estimator 5.6]. Here
addends may be negative, because the product of the coordinates of the operator F is
negative.

In order to avoid such decrease in uncertainties we introduced the flags CLSRM VIRTUAL-
PARAERRDIVERSIFICATION, CLSRMVIRTUALPROCVARDIVERSIFICATION and CLSR-
MVIRTUALTAILDIVERSIFICATION, which can be specified within the parameter What
of the function Init. If the flag is set such negative addends will be ignored within the
approximated estimation of the parameter error, process variance and tail uncertainties,
respectively.

Note: Although for the tail uncertainties the estimators with and without approxima-
tion are the same the flag CLSRMVIRTUALTAILDIVERSIFICATION only applies to the
estimator with approximation, see Section

24

3.6 Calculation of exposures

Sometimes inconsistent data or estimation errors lead to exposures R} and R]'™ that
are negative (or positive) instead or zero. We introduced the flags CLSRMPREVENTFU-
TURERFROMCHANGINGSIGN and CLSRMPREVENTPASTRFROMCHANGINGSIGN, which
can be specified within the parameter What of the function Init. If such a flag is set
we stop the decrease (or increase) of known or projected exposures, respectively, at zero.
That means if R} (or R];"™) has a different sign than the first R}, # 0, j < k, (or
RP™), we set it to zero.
Note: Doing so we leave the theoretical framework of LSRMs (at least for the exposures
%), since such a maximum (or minimum) with zero is not a linear function of claim

properties!

4 Notes about the implementation

LSRMTooLs have been programmed within Delphi. We have tried to speed up calcu-
lations. Therefore, we broke down the calculation into small steps and implemented an
algorithm that ensures that recalculation of a step will only occur if necessary. In order
to do so we have to keep provisional results in memory, which lead to restrictions of the
complexity of reserving models. If the parameter What of the function Init contains the
flag CLSRMREDUCEMEMSIZE we do not store all of the provisional results in memory
at the cost of that only approximated uncertainties can be estimated.

Although most of the parameters and results are indexed by more than one index we use
one dimensional arrays of float values in order to store them. This speeds up calculations
in comparison to using multidimensional arrays. But we are sure that the calculation
can be speeded up much more, for instance by using multiple cores and GPUs instead of
CPUs.

Section .1l contains short descriptions about the calculation steps and [2] gives an overview
about their dependencies.

4.1 Initialisation steps

Init_alpha: Initialises user defined mixing weights o".
Init_CDR: Calculates the total one period uncertainty without tail.
Init_ CDRCov: Calculates the covariance matrix of the one period uncertainty.

Init_CDRCovEigenvalue: Calculates eigenvalues and eigenvectors of the covariance
matrix of the one period uncertainty.

Init_CDRCovEigenvalueParaErr: Calculates eigenvalues and eigenvectors of the co-
variance matrix of the one period parameter error.

Init_ CDRCovEigenvalueParaErrProxy: Calculates eigenvalues and eigenvectors of
the covariance matrix of the approximated one period parameter error.

25

Init_ CDRCovEigenvalueParaErrTail: Calculates eigenvalues and eigenvectors of the
covariance matrix of the one period parameter error with tail.

Init_ CDRCovEigenvalueParaErrTailProxy: Calculates eigenvalues and eigenvectors
of the covariance matrix of the approximated one period parameter error with tail.

Init_CDRCovEigenvalueProcVar: Calculates eigenvalues and eigenvectors of the co-
variance matrix of the one period process variance.

Init_CDRCovEigenvalueProcVarProxy: Calculates eigenvalues and eigenvectors of
the covariance matrix of the approximated one period process variance.

Init_CDRCovEigenvalueProcVarTail: Calculates eigenvalues and eigenvectors of the
covariance matrix of the one period process variance with tail.

Init_CDRCovEigenvalueProcVarTailProxy: Calculates eigenvalues and eigenvectors
of the covariance matrix of the approximated one period process variance with tail.

Init_CDRCovEigenvalueProxy: Calculates eigenvalues and eigenvectors of the covari-
ance matrix of the approximated one period uncertainty.

Init_CDRCovEigenvalueTail: Calculates eigenvalues and eigenvectors of the covari-
ance matrix of the one period uncertainty with tail.

Init_ CDRCovEigenvalueTailProxy: Calculates eigenvalues and eigenvectors of the
covariance matrix of the approximated one period uncertainty with tail.

Init_CDRCovParaErr: Calculates the covariance matrix of the one period parameter
error.

Init_CDRCovParaErrProxy: Calculates the covariance matrix of the approximated
one period parameter error.

Init_CDRCovParaErrTail: Calculates the covariance matrix of the one period param-
eter error with tail.

Init CDRCovParaErrTailProxy: Calculates the covariance matrix of the approxi-
mated one period parameter error with tail.

Init_CDRCovProcVar: Calculates the covariance matrix of the one period process vari-
ance.

Init_CDRCovProcVarProxy: Calculates the covariance matrix of the approximated
one period process variance.

Init_CDRCovProcVarTail: Calculates the covariance matrix of the one period process
variance with tail.

Init_CDRCovProcVarTailProxy: Calculates the covariance matrix of the approxi-
mated one period process variance with tail.

26

Init_CDRCovProxy: Calculates the covariance matrix of the approximated one period
uncertainty.

Init_ CDRCovTail: Calculates the covariance matrix of the one period uncertainty with
tail.

Init_CDRCovTailProxy: Calculates the covariance matrix of the approximated one
period uncertainty with tail.

Init_CDRParaErr: Calculates the one period parameter error.
Init CDRParaErrDetail: Estimates the one period parameter error detail.
Init_CDRParaErrProxy: Calculates the approximated one period parameter error.

Init_CDRParaErrProxyDetail: Estimates the approximated one period parameter er-
ror detail.

Init_CDRParaErrTail: Calculates the one period tail parameter error.
Init_ CDRParaErrTailDetail: Estimates one period tail parameter error detail.

Init_ CDRParaErrTailProxy: Calculates the approximated one period tail parameter
error.

Init_CDRParaErrTailProxyDetail: Estimates the approximated one period tail pa-
rameter error detail.

Init_CDRProcVar: Calculates the one period process variance.
Init_ CDRProcVarDetail: Estimates the one period process variance detail.
Init_CDRProcVarProxy: Calculates the approximated one period process variance .

Init_ CDRProcVarProxyDetail: Calculates the approximated one period process vari-
ance detail.

Init_CDRProcVarTail: Calculates the one period tail process variance.
Init_CDRProcVarTailDetail: Estimates the one period tail process variance detail.

Init_CDRProcVarTailProxy: Calculates the approximated one period tail process vari-
ance.

Init_ CDRProcVarTailProxyDetail: Estimates the approximated one period tail pro-
cess variance detail.

Init_CDRProxy: Calculates the approximated total one period uncertainty.
Init_CDRTail: Calculates the total one period uncertainty with tail.

Init_CDRTailProxy: Calculates the approximated total one period uncertainty with
tail.

27

Init_CoorF': Calculates the coordinates of operator F. This is one of the most time
consuming steps for the calculation of approximated uncertainties.

Init_Defaultalpha: Calculates the default mixing weights a]".

Init_Defaultf: Calculates the default development factors f;".

Init_Defaultsigma: Calculates the default variance parameters o).

Init_Defaultw: Calculates the default weights wﬁ;l and wﬁ;”l.

Init_Eigenvalues: Calculates eigenvalues and eigenvectors of the covariance matrices
(0.771177712 Rmhmz)
k i,k my,ma’

Init_f: Initialises user defined development factors f;".

. ce 1. l
Init_Gammal: Initialises the exposure parameters v, ;-

. el - 1
Init Gamma?2: Initialises the exposure parameters ;"' ;"

Init_Geometry: Initialises the number of claim properties M, the number of accident
periods I, the number of development periods J and the number of future (tail)
development periods.

Init_InflationRate: Initialises inflation rates.
Init MSEP: Calculates the total ultimate uncertainty without tail.
Init MSEPCov: Calculates the covariance matrix of the ultimate uncertainty.

Init MSEPCovEigenvalue: Calculates eigenvalues and eigenvectors of the covariance
matrix of the ultimate uncertainty.

Init MSEPCovEigenvalueParaErr: Calculates eigenvalues and eigenvectors of the co-
variance matrix of the ultimate parameter error.

Init MSEPCovEigenvalueParaErrProxy: Calculates eigenvalues and eigenvectors of
the covariance matrix of the approximated ultimate parameter error.

Init MSEPCovEigenvalueParaErrTail: Calculates eigenvalues and eigenvectors of
the covariance matrix of the ultimate parameter error with tail.

Init MSEPCovEigenvalueParaErrTailProxy: Calculates eigenvalues and eigenvec-
tors of the covariance matrix of the approximated ultimate parameter error with
tail.

Init MSEPCovEigenvalueProcVar: Calculates eigenvalues and eigenvectors of the
covariance matrix of the ultimate process variance.

Init MSEPCovEigenvalueProcVarProxy: Calculates eigenvalues and eigenvectors of
the covariance matrix of the approximated ultimate process variance.

28

Init MSEPCovEigenvalueProcVarTail: Calculates eigenvalues and eigenvectors of
the covariance matrix of the ultimate process variance with tail.

Init_ MSEPCovEigenvalueProcVarTailProxy: Calculates eigenvalues and eigenvec-
tors of the covariance matrix of the approximated ultimate process variance with
tail.

Init MSEPCovEigenvalueProxy: Calculates eigenvalues and eigenvectors of the co-
variance matrix of the approximated ultimate uncertainty.

Init MSEPCovEigenvalueTail: Calculates eigenvalues and eigenvectors of the covari-
ance matrix of the ultimate uncertainty with tail.

Init MSEPCovEigenvalueTailProxy: Calculates eigenvalues and eigenvectors of the
covariance matrix of the approximated ultimate uncertainty with tail.

Init MSEPCovParaErr: Calculates the covariance matrix of the ultimate parameter
€error.

Init MSEPCovParaErrProxy: Calculates the covariance matrix of the approximated
ultimate parameter error.

Init MSEPCovParaErrTail: Calculates the covariance matrix of the ultimate param-
eter error with tail.

Init MSEPCovParaErrTailProxy: Calculates the covariance matrix of the approxi-
mated ultimate parameter error with tail.

Init_ MSEPCovProcVar: Calculates the covariance matrix of the ultimate process vari-
ance.

Init MSEPCovProcVarProxy: Calculates the covariance matrix of the approximated
ultimate process variance.

Init MSEPCovProcVarTail: Calculates the covariance matrix of the ultimate process
variance with tail.

Init MSEPCovProcVarTailProxy: Calculates the covariance matrix of the approxi-
mated ultimate process variance with tail.

Init MSEPCovProxy: Calculates the covariance matrix of the approximated ultimate
uncertainty.

Init MSEPCovTail: Calculates the covariance matrix of the ultimate uncertainty with
tail.

Init MSEPCovTailProxy: Calculates the covariance matrix of the approximated ulti-
mate uncertainty with tail.

Init MSEPParaErr: Calculates the ultimate parameter error.

Init MSEPParaErrDetail: Estimates the ultimate parameter error detail.

29

Init MSEPParaErrProxy: Calculates the approximated ultimate parameter error.

Init_MSEPParaErrProxyDetail: Estimates the approximated ultimate parameter er-
ror detail.

Init MSEPParaErrTail: Calculates the ultimate tail parameter error.
Init_MSEPParaErrTailDetail: Estimates the ultimate tail parameter error detail.

Init MSEPParaErrTailProxy: Calculates the approximated ultimate tail parameter
error.

Init MSEPParaErrTailProxyDetail: Estimates the ultimate tail parameter error de-
tail.

Init MSEPProcVar: Calculates the ultimate process variance.

Init_MSEPProcVarDetail: Estimates the ultimate process variance detail. This is one
of the most time consuming step for the calculation of the ultimate process variance
(without approximation).

Init MSEPProcVarProxy: Calculates the approximated ultimate process variance.

Init MSEPProcVarProxyDetail: Estimates the approximated ultimate process vari-
ance detail. This is one of the most time consuming steps for the calculation of the
approximated ultimate process variance.

Init MSEPProcVarTail: Calculates the ultimate tail process variance.
Init MSEPProcVarTailDetail: Estimates the ultimate tail process variance detail.

Init MSEPProcVarTailProxy: Calculates the approximated ultimate tail process vari-
ance.

Init_MSEPProcVarTailProxyDetail: Estimates the approximated ultimate tail pro-
cess variance detail.

Init_ MSEPProxy: Calculates the approximated total ultimate uncertainty.
Init MSEPTail: Calculates the total ultimate uncertainty with tail.

Init MSEPTailProxy: Calculates the approximated total ultimate uncertainty with
tail.

Init R1: Calculates the known values of the exposures R}}.
Init R2: Calculates the known values of the exposures R;}"™.

Init R2Full: Estimates the future values of the exposures R]"™.

. 1 2 12 _
Init_ rhoCDR: Calculates o; ;"."*, 0;" "™, o; 57" and o] '";"2.

Init_thoMSEP: Calculates o, """,

i17i27k

30

miy,ms2

Init_rhoStar: Calculates g,

Init_S: Initialises the known values of the claim properties S7}.

Init_sigma: Initialises user defined variance parameters o,"""".

Init_SxS0: Calculates the operator H(0).
Init_SxSCDRParaErr: Calculates H(Q;{ka’m), H(p>™"™), and H(gﬁjﬂl’m?). This

11,12,k
is the most time consuming step for the calculation of the one period parameter

error (without approximation).

Init_SxSCDRProcVar: Calculates H(@TZ:?) This is the most time consuming step
for the calculation of the one period process variance (without approximation).

Init SxXSMSEP: Calculates H(g;,"; ;). This is one of the most time consuming steps
for the calculation of the ultimate parameter error (without approximation).

Init_Ultimate: Calculates the total " weighted ultimates.

Init_UltimateDetail: Estimates future values of the claim properties ST} and the ex-
posures R

. o : I I+1
Init_w: Initialises user defined weights w!y’ and w]y' "

4.2 LSRM types

Since for all classical LSRMs, like the Chain Ladder Method and the Complementary Loss
Ratio Method, the exposure parameter do not depend on accident periods we introduced
three kinds of LSRM implementations.

STANDARDLSRM: Represent the most general implementation of LSRMs (with linear
exposures R:nklm) at the cost of calculation speed. Such a LSRM will be created if
the exposure parameters gammal and gamma2 within the function Init are two
dimensional array of float values where the second dimension has 7 and 8 columns,
respectively. In order to speed up calculations we only sum over pairs (m,[) of
claim property indices (and pairs (i, h) of accident periods) for which at least one
exposure parameters fy?k’fhd is not equal to zero. For instance, in the case of two
Chain Ladder Models we sum only over m = [and over ¢ = h.

SIMPLIFIEDLSRM (without inflation): A LSRM with exposures R}} and R} that
depend only on claim properties of the same accident period 7. Moreover these
dependencies have to be independent on the accident period ¢. For the exposure

1 D
parameters ;' ;, - and ;" this means

%ﬁ’éhm = 72?,’12,@,;" for all iy, o, hy and ho,
vk =0, for all 7 # h,

yiet = yme for all iy, i, hy and ho,
7%17’,:32’1 =0, for all i # h.

31

Such LSRMs will be created by the function Init if no inflation rate has been
specified and if the exposure parameters gammal and gamma?2 are either strings
or two dimensional array of float values where the second dimension has 5 and 6
columns, respectively.

For a SIMPLIFIEDLSRM we can skip all addends with ¢ = A in summations con-
taining the exposure parameters V?é,lh,f Moreover we only sum over pairs (m, ()

. .. L 1.
of claim property indices for within at least one exposure parameters 7, ", ; 1s not
equal to zero.

SIMPLIFIEDLSRM (with inflation): A LSRM with inflation where the corresponding
deflated version is a SIMPLIFIEDLSRM without inflation. In this case we cannot
skip summation over accident years (since the inflation may depend on the accident
period), but we still only sum over pairs (m,[) of claim property indices for within
at least one exposure parameters vf'";lh j is not equal to zero.

Such LSRMs will be created by the function Init if inflation rates have been specified
and if the exposure parameters gammal and gamma2 are either strings or two
dimensional array of float values where the second dimension has 5 and 6 columns,
respectively.

Note: If the exposures are specified by formulas, see function Init in Section 2.2]
the exposures ;"™ may depend on S™* in a non-linear way!

5 LSRMs Excel interface

In this section we describe the provided VBA interface of LSRMTO0OOLS, which can be
found in the files LSRM_TooLS_ACTIVEX.XLA and LSRM_TooLs_DLL.XLA. The first

is an interface that is based on the ActiveX component provided by the file LSRMTOOLS.DLL
and the second is based on the function based dynamic link library LSRM _DLL.DLL, see
Figure[LIl In all other aspects both interfaces are the same. For more information about
installation of those files see Section [L.3l

The Excel interface provides

e Excel functions for each property of LSRMToOLS, see Section 5.1l Those function
can be used like normal Excel functions. They can also be accessed via the category
LSRM Tools of the Excel menu “insert function”. The implementation of those
functions can be found within the VBA module “LSRM _Functions”.

e A concept based on “Excel names” that allows you to (re)initialise LSRMs more
comfortable, see Section 5.2

Without loss of generality we assume that accident and development periods are associated
with Excel rows and columns, respectively.

Note: If you specify the exposures R} and Rzl,j’mz by formulas, see Section 2.2] you may
have to change the regional settings to English (UK) or use the property Delimiters (if
you use the ActiveX component, otherwise it is the function LSRM_SetDelimiters),
see Section 2.21] in order to change the delimiters. The reason is, that by default the
decimal delimiter is taken from your regional settings, which may cause a conflict with
the default formula delimiter (;) or the default parameter delimiter (,).

32

5.1 Excel functions
5.1.1 Default values of parameters

All parameter of each described function in this section are optional and of type Variant.
If not otherwise noted default values are listed in Table [3l

5.1.2 Function LSRMalpha(LSRMName, m, i) as Variant
The interface for the property alpha, see Section 2.4]

5.1.3 Function LSRMalphalnitialised(LSRMName) as Variant

Returns if user defined mixing weights " have been initialised. If something went wrong
a corresponding error message will be returned.
The function is based on the property Initialised Parameters, see Section 2.20]

5.1.4 Function LSRMCalcInfo(LSRMName, Step, InfoType) as Variant

The interface for the property CalcInfo, see Section
Default value for the parameter InfoType is 2, i.e. calculation time. If the parameter
Step is missing the function returns:

InfoType =0: the string “Total”
InfoType =1: an empty string

InfoType =2: the total calculation time

5.1.5 Function LSRMCDR(LSRMName, m, i, Proxy, Part, Tail) as Variant

The interface for the property CDR, see Section 2.7l

The default value for Part is 2, i.e. the sum of process variance and parameter error.
Moreover, if m or i are missing or if they are not numeric we take M + 1 and I + 1,
respectively.

5.1.6 Function LSRMCDRCov(LSRMName, m1, m2, Proxy, Part,
Tail) as Variant

The interface for the property CDRCov, see Section 2.8
The default value for Part is 2, i.e. the sum of process variance and parameter error.

33

5.1.7 Function LSRMCDRCovEigenvalue(LSRMName, m, Proxy, Part,
Tail) as Variant

The interface for the property CDRCovEigenvalue, see Section
The default value for Part is 2, i.e. the sum of process variance and parameter error.

5.1.8 Function LSRMCDRCovEigenvector(LSRMName, m, 1, Proxy, Part,
Tail) as Variant

The interface for the property CDRCovEigenvector, see Section 2.10l
The default value for Part is 2, i.e. the sum of process variance and parameter error.

5.1.9 Function LSRMCDRDetail(LSRMName, m1, m2, i1, i2 as Long, Proxy,
Part, Tail) as Variant

The interface for the property CDRDetail, see Section 2.11]

5.1.10 Function LSRMCoorF(LSRMName, m, 1, i, k, h, j) as Variant
The interface for the property CoorF, see Section 2.12]

5.1.11 Function LSRMDefaultalpha(LSRMName, m, i) as Variant
The interface for the property Defaultalpha, see Section 2.13|

5.1.12 Function LSRMDefaultalphaUsed(LSRMName) as Variant
The interface for the property DefaultalphaUsed, see Section .14l

5.1.13 Function LSRMDefaultf(LSRMName, m, k) as Variant
The interface for the property Defaultf, see Section .15

5.1.14 Function LSRMDefaultfUsed(LSRMName) as Variant
The interface for the property DefaultfUsed, see Section

5.1.15 Function LSRMDefaultsigma(LSRMName, m1, m2, k) as Variant
The interface for the property Defaultsigma, see Section 2.171

34

5.1.16 Function LSRMDefaultsigmaUsed(LSRMName) as Variant
The interface for the property DefaultsigmaUsed, see Section 2.18

5.1.17 Function LSRMDefaultw(LSRMName, n, m, i, k) as Variant

The interface for the property Defaultw, see Section
The dafault value for the parameter n is 0, i.e. not normalised weights.

5.1.18 Function LSRMDefaultwUsed(LSRMName) as Variant
The interface for the property DefaultwUsed, see Section 2.20

5.1.19 Function LSRMDelimiters() as Variant
The interface for the property Delimiters, see Section 2211

5.1.20 Function LSRMEigenvalue(LSRMName, i, k, m) as Variant
The interface for the property Eigenvalue, see Section 2.22

5.1.21 Function LSRMEigenvector(LSRMName, i, k, m, 1) as Variant

The interface for the property Eigenvector, see Section 2.23]
The default value for the parameter 1 is 0.

5.1.22 Function LSRMf(LSRMName, m, k) as Variant
The interface for the property f, see Section 2.24]

5.1.23 Function LSRMfInitialised(LSRMName) as Variant

Returns if user defined development factors f;* have been initialised. If something went
wrong a corresponding error message will be returned.
The function is based on the property InitialisedParameters, see Section 2.20]

35

5.1.24 Function LSRMgammallnitialised(LSRMName) as Variant

Returns if the exposure parameters vﬂlh ; have been initialised. If something went wrong
a corresponding error message will be returned.
The function is based on the property Initialised Parameters, see Section 2.20]

5.1.25 Function LSRMgamma?2Initialised(LSRMName) as Variant

. l C e . .
Returns if the exposure parameters ;' :;2 have been initialised. If something went wrong

a corresponding error message will be returned.
The function is based on the property InitialisedParameters, see Section

5.1.26 Function LSRMI(LSRMName) as Variant
The interface for the property I, see Section 2.25]

5.1.27 Function LSRMInflationInitialised(LSRMName) as Variant

Returns if inflation rates have been initialised. If something went wrong a corresponding
error message will be returned.
The function is based on the property InitialisedParameters, see Section 2.20]

5.1.28 Function LSRMJ(LSRMName) as Variant
The interface for the property J, see Section

5.1.29 Function LSRMK(LSRMName) as Variant
The interface for the property K, see Section 2.28.

5.1.30 Function LSRMM (LSRMName) as Variant
The interface for the property M, see Section 2.311

5.1.31 Function LSRMModelType(LSRMName) as Variant
The interface for the property ModelType, see Section 2.32

36

5.1.32 Function LSRMMSEP(LSRMName, m, i, Proxy, Part, Tail) as Variant

The interface for the property MSEP, see Section 2.33]

The default value for Part is 2, i.e. the sum of process variance and parameter error.
Moreover, if m or i are missing or if they are not numeric we take M + 1 and I + 1,
respectively.

5.1.33 Function LSRMMSEPCov(LSRMName, m1, m2, Proxy, Part,
Tail) as Variant

The interface for the property MSEPCov, see Section [2.34]
The default value for Part is 2, i.e. the sum of process variance and parameter error.

5.1.34 Function LSRMMSEP CovEigenvalue(LSRMName, m, Proxy, Part,
Tail) as Variant

The interface for the property MSEP CovEigenvalue, see Section 2.35)
The default value for Part is 2, i.e. the sum of process variance and parameter error.

5.1.35 Function LSRMMSEPCovEigenvector(LSRMName, m, 1, Proxy, Part,
Tail) as Variant

The interface for the property MSEP CovEigenvector, see Section 2.36
The default value for Part is 2, i.e. the sum of process variance and parameter error.

5.1.36 Function LSRMMSEPDetail(LSRMName, m1, m2, il, i2 as Long, Proxy,
Part, Tail) as Variant

The interface for the property MSEPDetail, see Section 2371

5.1.37 Function
LSRMPreventFutureExposureFromChangingSign(LSRMName) as Variant

Returns if we forbid future exposures to change sign, see Section If something went
wrong a corresponding error message will be returned.
The function is based on the property CalculationFlags, see Section 2.6l

5.1.38 Function
LSRMPreventPastExposureFromChangingSign(LSRMName) as Variant

Returns if we forbid past (known) exposures to change sign, see Section If something
went wrong a corresponding error message will be returned.

37

The function is based on the property CalculationFlags, see Section 2.6

5.1.39 Function LSRMR1(LSRMName, m, i, k) as Variant
The interface for the property R1, see Section 238

5.1.40 Function LSRMR2(LSRMName, m1, m2, i, k) as Variant
The interface for the property R2, see Section [2.39]

5.1.41 Function LSRMReduceMemory(LSRMName) as Variant

Returns if some calculations should be disabled in oder to save the size of used memory,
see Section 4 If something went wrong a corresponding error message will be returned.
The function is based on the property CalculationFlags, see Section 2.6

5.1.42 Function LSRMS(LSRMName, m, i, k) as Variant
The interface for the property S, see Section 240l

5.1.43 Function LSRMsigma(LSRMName, m1, m2, k) as Variant
The interface for the property sigma, see Section [2.411

5.1.44 Function LSRMsigmalnitialised(LSRMName) as Variant

Returns if user defined variance parameters o, *"""? have been initialised. If somethin
k

went wrong a corresponding error message will be returned.
The function is based on the property Initialised Parameters, see Section 2.20]

5.1.45 Function LSRMSInitialised(LSRMName) as Variant

Returns if claim properties 57", have been initialised. If something went wrong a corre-
sponding error message will be returned.
The function is based on the property InitialisedParameters, see Section

5.1.46 Function LSRMUItimate(LSRMName, m, i, Tail) as Variant
The interface for the property Ultimate, see Section 2.42]

38

If m or i are missing or if they are not numeric we take M + 1 and I + 1, respectively.
That means we take to corresponding total ultimate.

5.1.47 Function LSRMUseMSEPifTailCDRisLarger(LSRMName) as Variant

Returns if the solvency uncertainty should be bound by the ultimate uncertainty in the
tail, see Section 3.2l If something went wrong a corresponding error message will be
returned.

The function is based on the property CalculationFlags, see Section 2.6l

5.1.48 Function LSRMVirtualParaErrDiversification(LSRMName) as Variant

Returns if virtual diversification in the estimation of parameter errors should be allowed,
see Section If something went wrong a corresponding error message will be returned.
The function is based on the property CalculationFlags, see Section 2.6

5.1.49 Function LSRMVirtualProcVarDiversification(LSRMName) as Variant

Returns if virtual diversification in the estimation of process variances should be allowed,
see Section If something went wrong a corresponding error message will be returned.
The function is based on the property CalculationFlags, see Section 2.6

5.1.50 Function LSRMVirtualTailDiversification(LSRMName) as Variant

Returns if virtual diversification in the estimation of tail uncertainties should be allowed,
see Section If something went wrong a corresponding error message will be returned.
The function is based on the property CalculationFlags, see Section 2.6

5.1.51 Function LSRMw(LSRMName, n, m, i, k) as Variant

The interface for the property w, see Section 2.43]
The dafault value for the parameter n is 0, i.e. not normalised weights.

5.1.52 Function LSRMWeightsUsedForDefaultsigma(LSRMName) as Variant

Returns if weights should be used for the calculation of the standard covariance param-
eters, see Section 3.4l If something went wrong a corresponding error message will be
returned.

The function is based on the property CalculationFlags, see Section 2.6l

39

5.1.53 Function LSRMwInitialised(LSRMName) as Variant

Returns if user defined weights w%’l and wﬁ’”l have been initialised. If something went

wrong a corresponding error message will be returned.
The function is based on the property InitialisedParameters, see Section

5.2 Excel user interface for LSRMs

In order to make the usage of LSRMs within Excel more comfortable we added a menu,
see Section B.2.1] and the procedure LSRMInit, which can be accessed by the shortcut
CTRL + SHIFT + 1. The inputs for this procedure are based on a special Excel names
convention, see Sections [5.2.2, and £.2.4

5.2.1 LSRM menu in Excel

The Excel interfaces LSRM_T00OLS_ACTIVEX.XLA and LSRM_TooLs_DLL.XLA add
the menu LSRM TooLS to Excel with the following entries:

Initialise: (Re)initialises the LSRM of the active worksheet, see Section (5.23l This
procedure can also be accessed by the shortcut CTRL + SHIFT + I.

Recalculate Selected Range Recalculates the selected range of the active worksheet.
This may be necessary, since Excel does not know if some parts of the LSRM have
been recalculated. If only a singe cell is selected the whole worksheet will be recalcu-
lated. You can also accesses this functionality by the shortcut CTRL + SHIFT + R.

Recalculate Sheet Recalculates the active worksheet.
Free Memory Removes all LSRMs from memory.

About Displays a short message about the version and the license of LSRMToOOLS.

5.2.2 Supported Excel names

The initialisation, see Section £.2.3] and the implemented checks, see Section [£.2.4] are
based on Excel names. In this section we will describe those Excel names.

LSRM_ALPHA: Specifies the range of the user defined mixing weights «/". It has to
consists of M areas (one for each claim property, the order has to be the same as
for LSRM_S) that are ranges of I rows and 1 column. If no such Excel name exists
no user defined mixing weights can be (re)initialised.

LSRM_CALCINFO: Refers to the range that contains the informations about the calcu-
lated steps. If this name exists the corresponding range will be recalculated at the
end of a (re)initialisation of a LSRM.

LSRM_F: Specifies the range of the user defined development factors f;". It has to
consists of M areas (one for each claim property, the order has to be the same as
for LSRM_S) that are ranges of 1 row and J — 1 + K columns. If no such Excel
name exists no user defined development factors can be (re)initialised.

40

LSRM_cAMMAL: Specifies the range of the exposure parameter Vleé,lh,j- In case of a
formula based specification of those exposure parameters it has to be a single cell
that contains the corresponding formula. Otherwise, the range has to consist of the
following 7 columns (or 5 columns for a SIMPLIFIEDLSRM) in the specified order:

m,l

m, 1, 4, k, h, j and ;37 (for a SIMPLIFIEDLSRM the columns ¢ and h have to

(2
. . 1
be omitted). If no such Excel name exists no exposure parameters 7, ; can be
(re)initialised.

my,ma2 7l

LSRM_GAMMAZ2: Specifies the range of the exposure parameter ;5" In case of a
formula based specification of those exposure parameters it has to be a single cell
that contains the corresponding formula. Otherwise, the range has to consist of the
following 8 columns (or 6 columns for a SIMPLIFIEDLSRM) in the specified order:

mi,ma,l

my, ma, L, 4, k, by jand ;50 (for a SIMPLIFIEDLSRM the columns i and h have
to be omitted). If no such Excel name exists no exposure parameters 7:'";1,:7;” can

be (re)initialised.

LSRM_GAMMABYFORMULA: Refers to a cell that specifies if the exposure parameters
are specified by formulas. If the Excel name does not exist or if the corresponding
cell does not contain FALSE we assume that the exposure parameters are specified
by formulas.

LSRM_INITALPHA: Refers to a cell that specifies if user defined mixing weights o should
be (re)initialised. If the Excel name does not exist or if the corresponding cell does
not contain TRUE no user defined mixing weights will be (re)initialised.

LSRM_INITF: Refers to a cell that specifies if user defined development factors f;"* should
be (re)initialised. If the Excel name does not exist or if the corresponding cell does
not contain TRUE no user defined development factors will be (re)initialised.

LSRM _INFLATION: Specifies the range of the inflation rates. It has to consists of M
areas (one for each claim property, the order has to be the same as for LSRM_S)
that are ranges of I row and J + K columns. If no such Excel name exists no
inflation rates can be (re)initialised.

LSRM_INITGAMMA1: Refers to a cell that specifies if exposure parameters vf'";lh ; should
be (re)initialised. The only case in which exposure parameters will not be (re)initia-
lised is if they are already initialised and the cell contains FALSE.

LSRM_INITGAMMAZ2: Refers to a cell that specifies if exposure parameters 7:'";1,:7;” should
be (re)initialised. The only case in which exposure parameters will not be (re)initialised
is if they are already initialised and the cell contains FALSE.

LSRM_INITINFLATION: Refers to a cell that specifies if inflation rates should be (re)initia-
lised. If the Excel name does not exist or if the corresponding cell does not contain
TRUE no inflation rates will be (re)initialised.

LSRM_INITS: Refers to a cell that specifies if claim properties should be (re)initialised.
The only case in which claim properties will not be (re)initialised is if they are
already initialised and the cell contains FALSE.

41

LSRM_INITSIGMA: Refers to a cell that specifies if user defined variance parameters
o, "™ should be (re)initialised. If the Excel name does not exist or if the corre-
sponding cell does not contain TRUE no used defined variance parameter will be

(re)initialised.

LSRM_INITW: Refers to a cell that specifies if user defined (not normalised) weights
w;r;[and wﬂ’”l should be (re)initialised. If the Excel name does not exist or
if the corresponding cell does not contain TRUE no used defined weights will be

(re)initialised.

LSRM_INPUTCHANGES: Refers to a range that are used to check if input parameters
have been changed since the last (re)initialisation, see Section [5.2.4l

LSRM_K: Refers to a cell that specifies the number of tail periods K. If the Excel name
does nor exists or if the cell does not contain a positive integer zero tail periods are
taken.

LSRM_NAME: Refers to a cell that specifies the name of the LSRM . If the Excel name
does not exist we take an empty string.

LSRM_OVERWRITE: Refers to a cell that specifies if an already LSRM should be over-
written. If the Excel name does not exist or if the corresponding cell does not
contain TRUE the LSRM will only be reinitialised, in the case it already exists.

LSRM_PREVENTFUTUREEXPOSUREFROMCHANGINGSIGN: Refers to a cell that spec-
ifies if future (projected) exposures should be prevented from changing signs, see
Section [3.6l If the Excel name does not exist or if the corresponding cell does not
contain TRUE future exposures will not be prevented from changing signs.

LSRM_PREVENTPASTEXPOSUREFROMCHANGINGSIGN: Refers to a cell that specifies
if past (tail) exposures should be prevented from changing signs, see Section If
the Excel name does not exist or if the corresponding cell does not contain TRUE
past exposures will not be prevented from changing signs.

LSRM_REDUCEMEMSIZE: Refers to a cell that specifies if the used memory size should
be reduced at the cost of some functionality, see Section Ml If the Excel name does

not exist or if the corresponding cell does not contain TRUE the full functionality
of LSRMTooLs will be accessible.

LSRM_S: Specifies the range of the claim properties. This range also defines the number
of claim properties M and its order (equal to the number of areas), the number of
accident periods I (equal to the number of rows of the first area) and the number
of development periods J (equal to the number of columns of the first area). If no
such Excel name exists no claim properties can be (re)initialised.

LSRM_siGMA: Specifies the range of the user defined variance parameters o,"""*. It

has to consists of M time M areas (ordered like (0,0), (0,1),..., (0, M), (1,0),...,
(M, M)) that are ranges of J — 1 4+ 1k~ columns. If no such Excel name exists no
user defined covariance parameters can be (re)initialised.

42

LSRM_USEDEFAULTALPHA: Refers to a cell that specifies if default mixing weights "
should be used. If the Excel name does not exist, if the corresponding cell does not
contain FALSE or if no user defined mixing weights are initialised the default ones
will be used.

LSRM_USEDEFAULTF: Refers to a cell that specifies if default development factors f;*
should be used. If the Excel name does not exist, if the corresponding cell does not
contain FALSE or if no user defined development factors are initialised the default
ones will be used.

LSRM _USEDEFAULTSIGMA: Refers to a cell that specifies if default covariance parame-
ters o, should be used. If the Excel name does not exist, if the corresponding
cell does not contain FALSE or if no user defined covariance parameters are initialised

the default ones will be used.

LSRM_USEDEFAULTW: Refers to a cell that specifies if default weights w%’] and w%”l

should be used. If the Excel name does not exist, if the corresponding cell does not
contain FALSE or if no user defined weights are initialised the default ones will be
used.

LSRM_USEINFLATION: Refers to a cell that specifies if inflation rates should be used.
If inflation rates have been specified we will use them except for the case where the
cell contains FALSE.

LSRM_USEWEIGHTSFORDEFAULTSIGMA: Refers to a cell that specifies if weights should
be used for the calculation of the covariance parameters o, """, see Section B4l If
the Excel name does not exist or if the corresponding cell does not contain FALSE
we will use the same weights like in the calculation of the development factors f;".

LSRM_VIRTUALPARAERRDIVERSIFICATION: Refers to a cell that specifies if virtual
diversification for parameter error estimations should be allowed, see Section B.6l If
the Excel name does not exist or if the corresponding cell does not contain TRUE
we forbid such virtual diversification.

LSRM_VIRTUALPROCVARDIVERSIFICATION: Refers to a cell that specifies if virtual
diversification for process variance estimations should be allowed, see Section
If the Excel name does not exist or if the corresponding cell does not contain TRUE
we forbid such virtual diversification.

LSRM _VIRTUALTAILDIVERSIFICATION: Refers to a cell that specifies if virtual diversi-
fication for tail uncertainty estimations should be allowed, see Section 3.6l If the
Excel name does not exist or if the corresponding cell does not contain TRUE we
forbid such virtual diversification.

LSRM_w: Specifies the range of the user defined (not normalised) weights w?,;l and

wZ%k’IH. It has to consists of M areas (one for each claim property, the order has to
be the same as for LSRM_S) that are ranges of I rows and J — 1+ 1k~ columns.
If no such Excel name exists no user defined weights can be (re)initialised.

43

5.2.3 Reinitialising of LSRMs

We implemented a mechanism based on predefined Excel names, see Section L It is
accessible by the shortcut CTRL + SHIFT + I and does the following:

1. Look for the name of the active LSRM within the cell the Excel name LSRM_NAME
refers to.

2. Look within the Excel Name LSRM_OVERWRITE if an already existing LSRM should
be overwritten.

3. Look for exposure parameters vﬁgfh’j within the Excel name LSRM_GAMMA1 and if
they should be (re)initialised within the Excel name LSRN_INITGAMMAL.

4. Look for exposure parameters 7, . ,:” 2! within the Excel name LSRM_GAMMA2 and if
they should be (re)initialised Wlthm the Excel name LSRN_INITGAMMA?2.

5. Look for claim properties S}, within the Excel name LSRM_S and if they should be
(re)initialised within the Excel name LSRN_INITS. Note, the corresponding range
also defines the number and order of claim properties M (the number and order of
areas), the number of accident periods I (number of rows of the first area) and the
number of development periods J (number of columns of the first area).

6. Look for manual weights w;’; " and wl! k 1 within the Excel name LSRM_w and if
they should be (re)lnltlahsed within the Excel name LSRN_INITW. Note, the
found values will be normalised by the program such that the sum over all accident
periods equals one. Therefore, it is possible to specify both, w; 7 I and wm I+ within
one range.

7. Look for manual development factors f;”* within the Excel name LSRM_F and if they
should be (re)initialised within the Excel name LSRN _INITF.

8. Look for manual covariance parameters o, """ within the Excel name LSRM_SIGMA
and if they should be (re)initialised within the Excel name LSRN _INITSIGMA.

9. Look for manual mixing weights a]" within the Excel name LSRM_ALPHA and if they
should be (re)initialised within the Excel name LSRN _INITALPHA.

10. Look for inflation rates within the Excel name LSRM _INFLATION and if they should
be (re)initialised within the Excel name LSRN_INITINFLATION.

11. Look within the Excel Name LSRM_UsSeEDEFAULTW if default weights w%’l and
wZ}f *1 should be used. Note, if no manual weights are initialised default once will

always be used.

12. Look within the Excel Name LSRM_USEDEFAULTF if default development factors
11" should be used. Note, if no manual development factors are initialised default
once will always be used.

44

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Look within the Excel Name LSRM_USEDEFAULTSIGMA if default covariance pa-
rameters o, " should be used. Note, if no manual covariance parameters are

initialised default once will always be used.

Look within the Excle name LSRM_USEWEIGHTSFORDEFAULTSIGMA if the same
weights should be used for the calculation of the default covariance parameters

o™ and for the development factors f;*. If not the default weights are used for

the calculation of the default covariance parameters o,"""".

Look within the Excel Name LSRM _USEDEFAULTALPHA if default mixing weights
a]" should be used. Note, if no manual mixing weights are initialised default once
will always be used.

Look within the Excel Name LSRM_REDUCEMEMSIZE if the used memory size
should be kept smaller at the cost of some functionality.

Look within the Excel Name LSRM_VIRTUALPROCVARDIVERSIFICATION if “vir-
tual diversification” in process variance estimations should be allowed, see Sec-

tion 3.0

Look within the Excel Name LSRM_VIRTUALPARAERRDIVERSIFICATION if “vir-
tual diversification” in parameter error estimations should be allowed, see Sec-

tion 3.0l

Look within the Excel Name LSRM_VIRTUALTAILDIVERSIFICATION if “virtual di-
versification” in tail uncertainty estimations should be allowed, see Section

Look within the Excel Name LSRM_PREVENTPASTEXPOSUREFROMCHANGING-
SIGN if past (known) exposures should be allowed to change sign, see Section B.6l

Look within the Excel Name LSRM_PREVENTFUTUREEXPOSUREFROMCHANGING-

SIGN if future (projected) exposures should be allowed to change sign, see Sec-
tion [3.6l

Look within the Excel Name LSRM_K for the number of future (tail) periods.
Load claim properties S7}, if they should be (re)initialised.

Look within the Excel Name LSRM_GAMMABYFORMULA if the exposures are spec-
ified by an array or a string.

Load the formula for the exposures R} or the exposure parameters %"Zlh j» if they
should be (re)initialised. For that matter the value of Excel name LSRM_GAMMABYFORMULA
is used.

Load the formula for the exposures R]"}/"™ or the exposure parameters vﬂl,}:zz’l, if they
should be (re)initialised. For that matter the value of Excel name LSRM_GAMMABYFORMULA
is used.

Load manual weights wﬁ;l and wmf *1if they should be (re)initialised.

45

28. Load manual development factors f;", if they should be (re)initialised.

29. Load manual covariance parameters o, ", if they should be (re)initialised.
30. Load manual mixing weights a", if they should be (re)initialised.

31. Load inflation rates, if they should be (re)initialised.

32. (Re)initialise the LSRM with the specified parameters.

33. Recalculate all formulas of the active worksheet and afterwards all cells of the range
specified by the Excel name LSRM_CALCINFO. This is necessary since Excel does
not know about the right order of calculation.

5.2.4 Implemented controls

Since the LSRM does not know if some input parameters, that are specified within Excel
ranges, may have been changed we implement a simple process to keep track of such
changes. Therefore, we use the function LSRMInputChanged on each of those input
ranges. This function returns TRUE if we are not in an update mode. In order to
remember the state of such cells when executing LSRMInit, LSRMCalculateRange or
LSRMCalculateSheet the collection of those cells have to be associated with the FExcel
name LSRM_INPUTCHANGES. Internally we use the procedures FRememberChanges
and FResetChanges.

Note, this will only work if Application.Calculation is set to xICalculationAutomatic.

References

[1] Dahms, René (2012). Linear Stochastic Reserving Methods. ASTIN Bulletin.

[2] Dependencies.xls

46

Flag

Value

Description

CLSRMREDUCEMEMSIZE

CLSRMOVERWRITEEXISTINGLSRM

CLSRMVIRTUALTAILDIVERSIFICATION

CLSRMVIRTUALPROCVARDIVERSIFICATION

CLSRMVIRTUALPARAERRDIVERSIFICATION

CLSRMPREVENTPASTRFROMCHANGINGSIGN

CLSRMPREVENTFUTURERFROMCHANGINGSIGN

CLSRMUSEWEIGHTSFORDEFAULTSIGMA

CLSRMUSEMSEPIFTAILCDRISLARGER

213

214

215

216

218

219

220

Table 2: calculation flags

47

disable some calculations in
order to reduce the used
memory size

an already existing LSRM
of the same name will be
overwritten

allow virtual tail diversifica-
tion within tail error esti-
mators, see Section
allow virtual diversification
within process variance es-
timators, see Section
allow virtual diversification
within parameter error esti-
mators, see Section
stop decrease (or increase)
of known exposures at zero,
see Section

stop decrease (or increase)
of known exposures at zero,
see Section

indicates that weights
should be used for the cal-
culation of the covariance
pagamstdrstafl dpproxima-
tion may lead to larger sol-
vency uncertainty (CDR)
than ultimate uncertainty
(MSEP). If this flag is set
then the MSEP is taken in
cases where the tail CDR is
larger.

Parameter

Default value

LSRMName

claim property indices like m, mq, mq and [
accident periods like 7, i1, i and h
development periods like k£ and j

Proxy

Part

Tail

the value of the Excel name
“LSRM_Name” if such a name ex-

ists, otherwise an empty string
0

(process variance)

0
0
1 (approximated estimations)
0
1 (with tail)

Table 3: Default values of Excel functions

48

	General
	Introduction
	License
	Installation
	Installation of the ActiveX component
	Installation of the function based dynamic link library

	Functionality of LSRMTools
	2.1 Function About
	2.2 Function Init
	2.3 Procedure Reset
	2.4 Property alpha
	2.5 Property CalcInfo
	2.6 Property CalculationFlags
	2.7 Property CDR
	2.8 Property CDRCov
	2.9 Property CDRCovEigenvalue
	2.10 Property CDRCovEigenvector
	2.11 Property CDRDetail
	2.12 Property CoorF
	2.13 Property Defaultalpha
	2.14 Property DefaultalphaUsed
	2.15 Property Defaultf
	2.16 Property DefaultfUsed
	2.17 Property Defaultsigma
	2.18 Property DefaultsigmaUsed
	2.19 Property Defaultw
	2.20 Property DefaultwUsed
	2.21 Property Delimiters
	2.22 Property Eigenvalue
	2.23 Property Eigenvector
	2.24 Property f
	2.25 Property I
	2.26 Property InitialisedParameters
	2.27 Property J
	2.28 Property K
	2.29 Property MaxVarCoef1
	2.30 Property MaxVarCoef2
	2.31 Property M
	2.32 Property ModelType
	2.33 Property MSEP
	2.34 Property MSEPCov
	2.35 Property MSEPCovEigenvalue
	2.36 Property MSEPCovEigenvector
	2.37 Property MSEPDetail
	2.38 Property R1
	2.39 Property R2
	2.40 Property S
	2.41 Property sigma
	2.42 Property Ultimate
	2.43 Property w

	Technical notes
	LSRMs and inflation
	LSRMs with Tails
	Estimation of resulting covariance matrices
	Estimation of the default covariance parameters
	Estimation of uncertainties
	Calculation of exposures

	Notes about the implementation
	Initialisation steps
	LSRM types

	LSRMs Excel interface
	Excel functions
	Default values of parameters
	5.1.2 Function LSRMalpha
	5.1.3 Function LSRMalphaInitialised
	5.1.4 Function LSRMCalcInfo
	5.1.5 Function LSRMCDR
	5.1.6 Function LSRMCDRCov
	5.1.7 Function LSRMCDRCovEigenvalue
	5.1.8 Function LSRMCDRCovEigenvector
	5.1.9 Function LSRMCDRDetail
	5.1.10 Function LSRMCoorF
	5.1.11 Function LSRMDefaultalpha
	5.1.12 Function LSRMDefaultalphaUsed
	5.1.13 Function LSRMDefaultf
	5.1.14 Function LSRMDefaultfUsed
	5.1.15 Function LSRMDefaultsigma
	5.1.16 Function LSRMDefaultsigmaUsed
	5.1.17 Function LSRMDefaultw
	5.1.18 Function LSRMDefaultwUsed
	5.1.19 Function LSRMDelimiters
	5.1.20 Function LSRMEigenvalue
	5.1.21 Function LSRMEigenvector
	5.1.22 Function LSRMf
	5.1.23 Function LSRMfInitialised
	5.1.24 Function LSRMgamma1Initialised
	5.1.25 Function LSRMgamma2Initialised
	5.1.26 Function LSRMI
	5.1.27 Function LSRMInflationInitialised
	5.1.28 Function LSRMJ
	5.1.29 Function LSRMK
	5.1.30 Function LSRMM
	5.1.31 Function LSRMModelType
	5.1.32 Function LSRMMSEP
	5.1.33 Function LSRMMSEPCov
	5.1.34 Function LSRMMSEPCovEigenvalue
	5.1.35 Function LSRMMSEPCovEigenvector
	5.1.36 Function LSRMMSEPDetail
	5.1.37 Function LSRMPreventFutureExposureFromChangingSign
	5.1.38 Function LSRMPreventPastExposureFromChangingSign
	5.1.39 Function LSRMR1
	5.1.40 Function LSRMR2
	5.1.41 Function LSRMReduceMemory
	5.1.42 Function LSRMS
	5.1.43 Function LSRMsigma
	5.1.44 Function LSRMsigmaInitialised
	5.1.45 Function LSRMSInitialised
	5.1.46 Function LSRMUltimate
	5.1.47 Function LSRMUseMSEPifTailCDRisLarger
	5.1.48 Function LSRMVirtualParaErrDiversification
	5.1.49 Function LSRMVirtualProcVarDiversification
	5.1.50 Function LSRMVirtualTailDiversification
	5.1.51 Function LSRMw
	5.1.52 Function LSRMWeightsUsedForDefaultsigma
	5.1.53 Function LSRMwInitialised

	Excel user interface for LSRMs
	LSRM menu in Excel
	Supported Excel names
	Reinitialising of LSRMs
	Implemented controls

